Probing new physics with polarization components of the tau lepton in quasielastic $e^- p \to Λ_c τ^-$ scattering process (2402.16344v2)
Abstract: Kinematics restrict the ability of rare charm decays to explore the charged Lepton Flavor Violation processes mediated by the quark-level $c\to u \ell \tau$ transition. To fill the gap, we propose exploring new physics (NP) through the quasielastic scattering process $e-p\to \tau-\Lambda_c$ and the polarization of the $\tau$ lepton. As analyzing modes for the $\tau$ polarization, we consider the decays $\tau-\to \pi-\nu_{\tau}$, $\tau-\to \rho-\nu_{\tau}$, and $\tau- \to \ell-\bar{\nu}{\ell}\nu{\tau}$, and show that the $\tau$ polarization components can be extracted from analyzing the kinematics of the $\tau$ visible decay products. In the framework of a general low-energy effective Lagrangian, we then perform a detailed analysis of the polarization components in various aspects and scrutinize possible NP signals. With one upcoming experimental setup, we finally demonstrate promising event rate can be expected for the cascade process and, even in the worst-case scenario -- no signals is observed at all -- it can still provide a competitive potential for constraining the NP, compared with those from the high-$p_T$ dilepton invariant mass tails at high-energy colliders.
- L. Calibbi and G. Signorelli, Riv. Nuovo Cim. 41, 71 (2018), arXiv:1709.00294 [hep-ph] .
- M. Ardu and G. Pezzullo, Universe 8, 299 (2022), arXiv:2204.08220 [hep-ph] .
- W. Altmannshofer and F. Archilli, in Snowmass 2021 (2022) arXiv:2206.11331 [hep-ph] .
- D. Guadagnoli and P. Koppenburg, in Snowmass 2021 (2022) arXiv:2207.01851 [hep-ph] .
- K. Kodama et al. (E653), Phys. Lett. B 345, 85 (1995).
- J. Lees et al. (BaBar), Phys. Rev. D 84, 072006 (2011), arXiv:1107.4465 [hep-ex] .
- S. de Boer and G. Hiller, Phys. Rev. D93, 074001 (2016), arXiv:1510.00311 [hep-ph] .
- R. Aaij et al. (LHCb), Phys. Lett. B 754, 167 (2016), arXiv:1512.00322 [hep-ex] .
- R. Aaij et al. (LHCb), Phys. Rev. D 97, 091101 (2018), arXiv:1712.07938 [hep-ex] .
- S. De Boer and G. Hiller, Phys. Rev. D 98, 035041 (2018), arXiv:1805.08516 [hep-ph] .
- J. P. Lees et al. (BaBar), Phys. Rev. D 101, 112003 (2020), arXiv:2004.09457 [hep-ex] .
- R. Aaij et al. (LHCb), JHEP 06, 044, arXiv:2011.00217 [hep-ex] .
- H. Gisbert, M. Golz, and D. S. Mitzel, Mod. Phys. Lett. A 36, 2130002 (2021), arXiv:2011.09478 [hep-ph] .
- M. Golz, G. Hiller, and T. Magorsch, JHEP 09, 208, arXiv:2107.13010 [hep-ph] .
- M. Aaboud et al. (ATLAS), Phys. Rev. D 98, 092008 (2018), arXiv:1807.06573 [hep-ex] .
- A. Angelescu, D. A. Faroughy, and O. Sumensari, Eur. Phys. J. C 80, 641 (2020), arXiv:2002.05684 [hep-ph] .
- R. Fleischer, R. Jaarsma, and G. Koole, Eur. Phys. J. C 80, 153 (2020), arXiv:1912.08641 [hep-ph] .
- P. Colangelo, F. De Fazio, and F. Loparco, Phys. Rev. D 103, 075019 (2021), arXiv:2102.05365 [hep-ph] .
- R. L. Workman and Others (Particle Data Group), PTEP 2022, 083C01 (2022).
- J. Arrington et al., Prog. Part. Nucl. Phys. 127, 103985 (2022), arXiv:2112.00060 [nucl-ex] .
- R. Mandal and A. Pich, JHEP 12, 089, arXiv:1908.11155 [hep-ph] .
- R. M. Godbole, S. D. Rindani, and R. K. Singh, JHEP 12, 021, arXiv:hep-ph/0605100 .
- H. E. Haber, in 21st Annual SLAC Summer Institute on Particle Physics: Spin Structure in High-energy Processes (School: 26 Jul - 3 Aug, Topical Conference: 4-6 Aug) (SSI 93) (1994) pp. 231–272, arXiv:hep-ph/9405376 .
- K. Hagiwara, M. M. Nojiri, and Y. Sakaki, Phys. Rev. D 89, 094009 (2014), arXiv:1403.5892 [hep-ph] .
- M. Bordone, G. Isidori, and D. van Dyk, Eur. Phys. J. C 76, 360 (2016), arXiv:1602.06143 [hep-ph] .
- R. Alonso, A. Kobach, and J. Martin Camalich, Phys. Rev. D 94, 094021 (2016), arXiv:1602.07671 [hep-ph] .
- Z. Ligeti, M. Papucci, and D. J. Robinson, JHEP 01, 083, arXiv:1610.02045 [hep-ph] .
- P. Asadi, M. R. Buckley, and D. Shih, Phys. Rev. D 99, 035015 (2019), arXiv:1810.06597 [hep-ph] .
- R. Alonso, J. Martin Camalich, and S. Westhoff, SciPost Phys. Proc. 1, 012 (2019), arXiv:1811.05664 [hep-ph] .
- U. Nierste, S. Trine, and S. Westhoff, Phys. Rev. D 78, 015006 (2008), arXiv:0801.4938 [hep-ph] .
- M. Tanaka and R. Watanabe, Phys. Rev. D 82, 034027 (2010), arXiv:1005.4306 [hep-ph] .
- R. Alonso, J. Martin Camalich, and S. Westhoff, Phys. Rev. D 95, 093006 (2017), arXiv:1702.02773 [hep-ph] .
- N. Penalva, E. Hernández, and J. Nieves, JHEP 06, 118, arXiv:2103.01857 [hep-ph] .
- N. Penalva, E. Hernández, and J. Nieves, JHEP 10, 122, arXiv:2107.13406 [hep-ph] .
- T. Feldmann and M. W. Y. Yip, Phys. Rev. D85, 014035 (2012), [Erratum: Phys. Rev.D86,079901(2012)], arXiv:1111.1844 [hep-ph] .
- S. Meinel, Phys. Rev. D97, 034511 (2018), arXiv:1712.05783 [hep-lat] .
- D. Das, Eur. Phys. J. C 78, 230 (2018), arXiv:1802.09404 [hep-ph] .
- J. J. J. Kokkedee, The quark model (W. A. Benjamin, 1969).
- M. Petric et al. (Belle), Phys. Rev. D 81, 091102 (2010), arXiv:1003.2345 [hep-ex] .
- J. Arrington et al. (Jefferson Lab SoLID), J. Phys. G 50, 110501 (2023), arXiv:2209.13357 [nucl-ex] .
- K. Hafidi et al. (E12-12-006), Near Threshold Electroproduction of J/Ψ𝐽ΨJ/\Psiitalic_J / roman_Ψ at 11 GeV (2012).
- C. Bouchiat and L. Michel, Nucl. Phys. 5, 416 (1958).
- L. Michel, Nuovo Cim. 14, 95 (1959).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.