Papers
Topics
Authors
Recent
Search
2000 character limit reached

SaRPFF: A Self-Attention with Register-based Pyramid Feature Fusion module for enhanced RLD detection

Published 26 Feb 2024 in cs.CV | (2402.16291v2)

Abstract: Detecting objects across varying scales is still a challenge in computer vision, particularly in agricultural applications like Rice Leaf Disease (RLD) detection, where objects exhibit significant scale variations (SV). Conventional object detection (OD) like Faster R-CNN, SSD, and YOLO methods often fail to effectively address SV, leading to reduced accuracy and missed detections. To tackle this, we propose SaRPFF (Self-Attention with Register-based Pyramid Feature Fusion), a novel module designed to enhance multi-scale object detection. SaRPFF integrates 2D-Multi-Head Self-Attention (MHSA) with Register tokens, improving feature interpretability by mitigating artifacts within MHSA. Additionally, it integrates efficient attention atrous convolutions into the pyramid feature fusion and introduce a deconvolutional layer for refined up-sampling. We evaluate SaRPFF on YOLOv7 using the MRLD and COCO datasets. Our approach demonstrates a +2.61% improvement in Average Precision (AP) on the MRLD dataset compared to the baseline FPN method in YOLOv7. Furthermore, SaRPFF outperforms other FPN variants, including BiFPN, NAS-FPN, and PANET, showcasing its versatility and potential to advance OD techniques. This study highlights SaRPFF effectiveness in addressing SV challenges and its adaptability across FPN-based OD models.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.