Papers
Topics
Authors
Recent
Search
2000 character limit reached

Scalable Multipartite Entanglement of Remote Rare-earth Ion Qubits

Published 25 Feb 2024 in quant-ph | (2402.16224v1)

Abstract: Single photon emitters with internal spin are leading contenders for developing quantum repeater networks, enabling long-range entanglement distribution for transformational technologies in communications and sensing. However, scaling beyond current few-node networks will require radical improvements to quantum link efficiencies and fidelities. Solid-state emitters are particularly promising due to their crystalline environment, enabling nanophotonic integration and providing spins for memory and processing. However, inherent spatial and temporal variations in host crystals give rise to static shifts and dynamic fluctuations in optical transition frequencies, posing formidable challenges in establishing large-scale, multipartite entanglement. Here, we introduce a scalable approach to quantum networking that utilizes frequency erasing photon detection in conjunction with adaptive, real-time quantum control. This enables frequency multiplexed entanglement distribution that is also insensitive to deleterious optical frequency fluctuations. Single rare-earth ions are an ideal platform for implementing this protocol due to their long spin coherence, narrow optical inhomogeneous distributions, and long photon lifetimes. Using two 171Yb:YVO4 ions in remote nanophotonic cavities we herald bipartite entanglement and probabilistically teleport quantum states. Then, we extend this protocol to include a third ion and prepare a tripartite W state: a useful input for advanced quantum networking applications. Our results provide a practical route to overcoming universal limitations imposed by non-uniformity and instability in solid-state emitters, whilst also showcasing single rare-earth ions as a scalable platform for the future quantum internet.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (91)
  1. Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication. Phys. Rev. Lett. 81, 5932–5935 (1998).
  2. Muralidharan, S. et al. Optimal architectures for long distance quantum communication. Sci. Rep. 6, 20463 (2016).
  3. Longer-baseline telescopes using quantum repeaters. Phys. Rev. Lett. 109, 070503 (2012).
  4. Kómár, P. et al. A quantum network of clocks. Nat. Phys. 10, 582–587 (2014).
  5. Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 22317 (2014).
  6. The ultimate physical limits of privacy. Nature 507, 443–447 (2014).
  7. Stephenson, L. J. et al. High-rate, high-fidelity entanglement of qubits across an elementary quantum network. Phys. Rev. Lett. 124, 110501 (2020).
  8. Krutyanskiy, V. et al. Entanglement of Trapped-Ion Qubits Separated by 230 Meters. Phys. Rev. Lett. 130, 50803 (2023).
  9. Daiss, S. et al. A quantum-logic gate between distant quantum-network modules. Science 371, 614–617 (2021).
  10. van Leent, T. et al. Entangling single atoms over 33 km telecom fibre. Nature 607, 69–73 (2022).
  11. Jing, B. et al. Entanglement of three quantum memories via interference of three single photons. Nature Photonics 13, 210–213 (2019).
  12. Telecom-heralded entanglement between multimode solid-state quantum memories. Nature 594, 37–40 (2021).
  13. Liu, X. et al. Heralded entanglement distribution between two absorptive quantum memories. Nature 594, 41–45 (2021).
  14. Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021).
  15. Delteil, A. et al. Generation of heralded entanglement between distant hole spins. Nat. Phys. 12, 218–223 (2016).
  16. Stockill, R. et al. Phase-Tuned Entangled State Generation between Distant Spin Qubits. Phys. Rev. Lett. 119, 10503 (2017).
  17. Knaut, C. M. et al. Entanglement of Nanophotonic Quantum Memory Nodes in a Telecommunication Network. Preprint at https://arxiv.org/abs/2310.01316 (2023).
  18. A single-photon switch and transistor enabled by a solid-state quantum memory. Science 361, 57–60 (2018).
  19. Zaporski, L. et al. Ideal refocusing of an optically active spin qubit under strong hyperfine interactions. Nat. Nanotechnol. 18, 257–263 (2023).
  20. Christle, D. J. et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater. 14, 160–163 (2015).
  21. Integrated quantum photonics with silicon carbide: Challenges and prospects. PRX Quantum 1, 020102 (2020).
  22. Higginbottom, D. B. et al. Optical observation of single spins in silicon. Nature 607, 266–270 (2022).
  23. Komza, L. et al. Indistinguishable photons from an artificial atom in silicon photonics. Preprint at https://arxiv.org/abs/2211.09305 (2022).
  24. Bayliss, S. L. et al. Optically addressable molecular spins for quantum information processing. Science 370, 1309–1312 (2020).
  25. Rose, B. C. et al. Observation of an environmentally insensitive solid-state spin defect in diamond. Science 361, 60–63 (2018).
  26. 2D materials for quantum information science. Nat. Rev. Mater. 4, 669–684 (2019).
  27. Arjona Martínez, J. et al. Photonic indistinguishability of the tin-vacancy center in nanostructured diamond. Phys. Rev. Lett. 129, 173603 (2022).
  28. Guo, X. et al. Microwave-based quantum control and coherence protection of tin-vacancy spin qubits in a strain-tuned diamond-membrane heterostructure. Phys. Rev. X 13, 041037 (2023).
  29. Germanium vacancy in diamond quantum memory exceeding 20 ms. Phys. Rev. Lett. 132, 026901 (2024).
  30. Rosenthal, E. I. et al. Microwave spin control of a tin-vacancy qubit in diamond. Phys. Rev. X 13, 31022 (2023).
  31. Moody, G. et al. 2022 Roadmap on integrated quantum photonics. J. Phys. Photonics 4, 12501 (2022).
  32. Nuclear spin-wave quantum register for a solid state qubit. Nature 602, 408–413 (2022).
  33. Abobeih, M. H. et al. Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature 606, 884–889 (2022).
  34. Uysal, M. T. et al. Coherent control of a nuclear spin via interactions with a rare-earth ion in the solid state. PRX Quantum 4, 10323 (2023).
  35. Utikal, T. et al. Spectroscopic detection and state preparation of a single praseodymium ion in a crystal. Nat. Commun. 5, 3627 (2014).
  36. Kindem, J. M. et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).
  37. Xia, K. et al. Tunable microcavities coupled to rare-earth quantum emitters. Optica 9, 445–450 (2022).
  38. Deshmukh, C. et al. Detection of single ions in a nanoparticle coupled to a fiber cavity. Optica 10, 1339–1344 (2023).
  39. Purcell enhancement of single-photon emitters in silicon. Optica 10, 783–789 (2023).
  40. Controlling single rare earth ion emission in an electro-optical nanocavity. Nat. Commun. 14, 1718 (2023).
  41. Ourari, S. et al. Indistinguishable telecom band photons from a single Er ion in the solid state. Nature 620, 977–981 (2023).
  42. The computational power of the W and GHZ states. Quantum Inf. Comput. 6, 173–183 (2005).
  43. Anonymous transmission in a noisy quantum network using the W𝑊Witalic_W state. Phys. Rev. A 98, 052320 (2018).
  44. Quantum internet: A vision for the road ahead. Science 362 (2018).
  45. Kindem, J. M. et al. Characterization of 171171{}^{171}start_FLOATSUPERSCRIPT 171 end_FLOATSUPERSCRIPTYb3+limit-from3{}^{3+}start_FLOATSUPERSCRIPT 3 + end_FLOATSUPERSCRIPT:YVO44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT for photonic quantum technologies. Phys. Rev. B 98, 24404 (2018).
  46. Creation of entangled states of distant atoms by interference. Phys. Rev. A 59, 1025–1033 (1999).
  47. Hermans, S. L. N. et al. Entangling remote qubits using the single-photon protocol: an in-depth theoretical and experimental study. New J. Phys. 25, 013011 (2023).
  48. Entanglement of distinguishable quantum memories. Phys. Rev. A 90, 1–5 (2014).
  49. Zhao, T. M. et al. Entangling different-color photons via time-resolved measurement and active feed forward. Phys. Rev. Lett. 112, 1–5 (2014).
  50. Measurement of qubits. Phys. Rev. A 64, 52312 (2001).
  51. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 2–5 (2005).
  52. Progress in quantum teleportation. Nat. Rev. Phys. 5, 339–353 (2023).
  53. Lo, H.-K. Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000).
  54. Quantum repeater for W𝑊Witalic_W states. PRX Quantum 4, 040323 (2023).
  55. Parallel single-shot measurement and coherent control of solid-state spins below the diffraction limit. Science 370, 592–595 (2020).
  56. Bersin, E. et al. Telecom Networking with a Diamond Quantum Memory. PRX Quantum 5, 10303 (2024).
  57. High quality factor nanophotonic resonators in bulk rare-earth doped crystals. Opt. Express 24, 536–544 (2016).
  58. Drever, R. W. P. et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97–105 (1983).
  59. Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).
  60. Phase-noise measurements in long-fiber interferometers for quantum-repeater applications. Phys. Rev. A 77, 52325 (2008).
  61. Hradil, Z. Quantum-state estimation. Phys. Rev. A 55, R1561–R1564 (1997).
  62. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).
  63. Nguyen, C. T. et al. An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond. Phys. Rev. B 100, 165428 (2019).
  64. Graph implementations for nonsmooth convex programs. Lecture Notes in Control and Information Sciences (Springer-Verlag Limited, 2008).
  65. CVX Research, Inc. CVX: Matlab software for disciplined convex programming, version 2.2. http://cvxr.com/cvx (2020).
  66. Purcell, E. M. Spontaneous Emission Probabilities at Radio Frequencies. Phys. Rev. 69, 674 (1946).
  67. Bartholomew, J. G. et al. On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4. Nat. Commun. 11, 3266 (2020).
  68. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).
  69. Maunz, P. et al. Quantum interference of photon pairs from two remote trapped atomic ions. Nat. Phys. 3, 538–541 (2007).
  70. Beugnon, J. et al. Quantum interference between two single photons emitted by independently trapped atoms. Nature 440, 779–782 (2006).
  71. Bernien, H. et al. Two-photon quantum interference from separate nitrogen vacancy centers in diamond. Phys. Rev. Lett. 108, 43604 (2012).
  72. Flagg, E. B. et al. Interference of single photons from two separate semiconductor quantum dots. Phys. Rev. Lett. 104, 137401 (2010).
  73. Lettow, R. et al. Quantum interference of tunably indistinguishable photons from remote organic molecules. Phys. Rev. Lett. 104, 123605 (2010).
  74. Lukin, D. M. et al. Two-emitter multimode cavity quantum electrodynamics in thin-film silicon carbide photonics. Phys. Rev. X 13, 11005 (2023).
  75. Limitations on the indistinguishability of photons from remote solid state sources. New J. Phys. 20 (2018).
  76. Temporal modes in quantum optics: then and now. Phys. Scr. 95, 64002 (2020).
  77. Time-resolved two-photon quantum interference. Appl. Phys. B 77, 797–802 (2003).
  78. Quantum beat of two single photons. Phys. Rev. Lett. 93, 70503 (2004).
  79. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).
  80. Spectroscopy and dynamics of Er3+:Y2⁢SiO5:superscriptErlimit-from3subscriptY2subscriptSiO5{\mathrm{Er}}^{3+}:{\mathrm{Y}}_{2}\mathrm{Si}{\mathrm{O}}_{5}roman_Er start_POSTSUPERSCRIPT 3 + end_POSTSUPERSCRIPT : roman_Y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_SiO start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT at 1.5⁢μ⁢m1.5𝜇m1.5\phantom{\rule{3.00003pt}{0.0pt}}\mu\mathrm{m}1.5 italic_μ roman_m. Phys. Rev. B 73, 75101 (2006).
  81. Sallen, G. et al. Subnanosecond spectral diffusion measurement using photon correlation. Nat. Photonics 4, 696–699 (2010).
  82. New, compensated Carr-Purcell sequences. Journal of Magnetic Resonance (1969) 89, 479–484 (1990).
  83. Quantum sensing. Rev. Mod. Phys. 89, 35002 (2017).
  84. Self-consistent noise characterization of quantum devices. Phys. Rev. B 106, 155413 (2022).
  85. Continuum fields in quantum optics. Phys. Rev. A 42, 4102–4114 (1990).
  86. Angerer, A. et al. Superradiant emission from colour centres in diamond. Nat. Phys. 14, 1168–1172 (2018).
  87. Photon Temporal Modes: A Complete Framework for Quantum Information Science. Phys. Rev. X 5, 41017 (2015).
  88. Quantum trajectories for propagating fock states. Phys. Rev. A 96, 023819 (2017).
  89. Quantum Measurement and Control (Cambridge University Press, 2009).
  90. Zhong, T. et al. Nanophotonic rare-earth quantum memory with optically controlled retrieval. Science 357, 1392–1395 (2017).
  91. Tiecke, T. G. et al. Efficient fiber-optical interface for nanophotonic devices. Optica 2, 70–75 (2015).
Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.