Enhancement of Entanglement via Josephson Parametric Amplifier in a Dual Cavity-Magnon System (2402.16042v1)
Abstract: In the two microwave (MW) cross-shaped cavity magnon system, we describe a method to produce multipartite entanglement and quantum steering. To achieve squeezed states of the magnons, a Josephson parametric amplifier (JPA) creates a squeezed vacuum field that drives the two cavities. We theoretically demonstrate that the cavity-cavity entanglement can be generated at the resonance point, however, increasing the cavity and magnon decay rates generate the cavity-magnon entanglement. By changing the squeezing parameter and increasing the decay rates, we can transfer the cavity-cavity entanglement to cavity-magnon entanglement. Furthermore, the cavity-cavity entanglement (survive up to 2.8K) not only found to be much stronger but also more robust as compared to cavity-magnon entanglement (survive up to 0.4K). More importantly, the genuine photon-magnon-photon tripartite entanglement could be achieved, which is robust against the thermal fluctuations and depends strongly on squeezing parameter. Furthermore, for current dual cavity-magnon system, two-way quantum steering is found when the optomagnonical couplings are equal. The current study offers a straightforward and practical method for achieving multipartite quantum correlations.
- Schrödinger E 1935 Naturwissenschaften 23 844
- Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Reviews of Modern Physics 86 1391
- Amazioug M, Nassik M and Habiballah N 2019 Chinese Journal of Physics 58 1-7
- El Qars J, Daoud M and Laamara R A 2018 Physical Review A 98 042115
- Cherepanov V, Kolokolov I and Lov V 1993 Physics reports 229 81-144
- Kittel C 1948 Physical review 73 155
- Tan H and Li J 2021 Physical Review Research 3 013192
- Wang F and Gou C 2023 Optics Letters 48 1164-1167
- Ullah K, Naseem M T and Mustecaploğlu Ö E 2020 Physical Review A 102 033721
- Nair J M and Agarwal G 2020 Applied Physics Letters 117
- Sohail A, Qasymeh M and Eleuch H 2023 Physical Review Applied 20 054062
- Li J, Zhu S Y and Agarwal G 2019 Physical Review A 99 021801
- Li J, Zhu S Y and Agarwal G 2018 Physical review letters 121 203601
- Yu M, Shen H and Li J 2020 Physical Review Letters 124 213604
- Li J and Gr¨blacher S 2021 Quantum Science and Technology 6 024005
- Liu Z X and Xiong H 2020 Optics Letters 45 5452-5455
- Amazioug M, Teklu B and Asjad M 2023 Scientific Reports 13 3833
- Kani A, Sarma B and Twamley J 2022 Physical Review Letters 128 013602
- Ding M S, Zheng L and Li C 2020 JOSA B 37 627-634
- Qi S f and Jing J 2021 Physical Review A 103 043704
- Sarma B, Busch T and Twamley J 2021 New Journal of Physics 23 043041
- Yang Z B, Liu H Y and Yang R C 2021 Annalen der Physik 533 2100156
- Gardiner C 1986 Physical review letters 56 1917
- DeJesus E X and Kaufman C 1987 Physical Review A 35 5288
- La Salle J P 1976 The stability of dynamical systems (SIAM)
- Simon R 2000 Physical Review Letters 84 2726
- Adesso G and Illuminati F 2007 Journal of Physics A: Mathematical and Theoretical 40 7821
- Adesso G and Illuminati F 2006 New Journal of Physics 8 15
- Coffman V, Kundu J and Wootters W K 2000 Physical Review A 61 052306