Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Low-Weight High-Distance Error Correcting Fermionic Encodings (2402.15386v2)

Published 23 Feb 2024 in quant-ph and cond-mat.str-el

Abstract: We perform an extended numerical search for practical fermion-to-qubit encodings with error correcting properties. Ideally, encodings should strike a balance between a number of the seemingly incompatible attributes, such as having a high minimum distance, low-weight fermionic logical operators, a small qubit to fermionic mode ratio and a simple qubit connectivity graph including ancilla qubits for the measurement of stabilizers. Our strategy consists of a three-step procedure in which we: first generate encodings with code distances up to $d\leq4$ by a brute-force enumeration technique; subsequently, we use these encodings as starting points and apply Clifford deformations to them which allows us to identify higher-distance codes with $d\leq7$; finally, we optimize the hardware connectivity graphs of resulting encodings in terms of the graph thickness and the number of connections per qubit. We report multiple promising high-distance encodings which significantly improve the weights of stabilizers and logical operators compared to previously reported alternatives.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. J. Haah, Algebraic methods for quantum codes on lattices, Revista Colombiana de Matemáticas 50, 299 (2017).
  2. N. Tantivasadakarn, Jordan-wigner dualities for translation-invariant hamiltonians in any dimension: Emergent fermions in fracton topological order, Physical Review Research 2, 023353 (2020).
  3. Y.-A. Chen, A. V. Gorshkov, and Y. Xu, Error-correcting codes for fermionic quantum simulation, arXiv preprint arXiv:2210.08411  (2022).
  4. P. Jordan and E. Wigner, über das paulische äquivalenzverbot, Zeitschrift für Physik 47, 631 (1928).
  5. V. Havlíček, M. Troyer, and J. D. Whitfield, Operator locality in the quantum simulation of fermionic models, Physical Review A 95, 032332 (2017).
  6. M. Steudtner and S. Wehner, Fermion-to-qubit mappings with varying resource requirements for quantum simulation, New Journal of Physics 20, 063010 (2018).
  7. R. W. Chien and J. Klassen, Optimizing fermionic encodings for both hamiltonian and hardware, arXiv preprint arXiv:2210.05652  (2022).
  8. M. Chiew and S. Strelchuk, Discovering optimal fermion-qubit mappings through algorithmic enumeration, Quantum 7, 1145 (2023).
  9. F. Verstraete and J. I. Cirac, Mapping local hamiltonians of fermions to local hamiltonians of spins, Journal of Statistical Mechanics: Theory and Experiment 2005, P09012 (2005).
  10. R. Ball, Fermions without fermion fields, Physical review letters 95, 176407 (2005).
  11. M. Steudtner and S. Wehner, Lowering qubit requirements for quantum simulations of fermionic systems, arXiv preprint arXiv:1712.07067  (2017).
  12. Y.-A. Chen, A. Kapustin, and Đ. Radičević, Exact bosonization in two spatial dimensions and a new class of lattice gauge theories, Annals of Physics 393, 234 (2018).
  13. A. Vardy, The intractability of computing the minimum distance of a code, IEEE Transactions on Information Theory 43, 1757 (1997).
  14. U. Kapshikar and S. Kundu, On the hardness of the minimum distance problem of quantum codes, IEEE Transactions on Information Theory 69, 6293 (2023).
  15. S. Aaronson and D. Gottesman, Improved simulation of stabilizer circuits, Physical Review A 70, 052328 (2004).
  16. D. Gottesman, Theory of fault-tolerant quantum computation, Phys. Rev. A 57, 127 (1998a).
  17. D. Gottesman, The heisenberg representation of quantum computers (1998b), arXiv:quant-ph/9807006 [quant-ph] .
  18. Y.-A. Chen and Y. Xu, Equivalence between fermion-to-qubit mappings in two spatial dimensions, PRX Quantum 4, 010326 (2023a).
  19. A. J. Landahl and B. C. A. Morrison, Logical fermions for fault-tolerant quantum simulation (2023), arXiv:2110.10280 [quant-ph] .
  20. M. Ozols, Clifford group (2008).
  21. Y.-A. Chen and Y. Xu, Equivalence between fermion-to-qubit mappings in two spatial dimensions, PRX Quantum 4, 010326 (2023b).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 2 likes.