Low-Weight High-Distance Error Correcting Fermionic Encodings (2402.15386v2)
Abstract: We perform an extended numerical search for practical fermion-to-qubit encodings with error correcting properties. Ideally, encodings should strike a balance between a number of the seemingly incompatible attributes, such as having a high minimum distance, low-weight fermionic logical operators, a small qubit to fermionic mode ratio and a simple qubit connectivity graph including ancilla qubits for the measurement of stabilizers. Our strategy consists of a three-step procedure in which we: first generate encodings with code distances up to $d\leq4$ by a brute-force enumeration technique; subsequently, we use these encodings as starting points and apply Clifford deformations to them which allows us to identify higher-distance codes with $d\leq7$; finally, we optimize the hardware connectivity graphs of resulting encodings in terms of the graph thickness and the number of connections per qubit. We report multiple promising high-distance encodings which significantly improve the weights of stabilizers and logical operators compared to previously reported alternatives.
- J. Haah, Algebraic methods for quantum codes on lattices, Revista Colombiana de Matemáticas 50, 299 (2017).
- N. Tantivasadakarn, Jordan-wigner dualities for translation-invariant hamiltonians in any dimension: Emergent fermions in fracton topological order, Physical Review Research 2, 023353 (2020).
- Y.-A. Chen, A. V. Gorshkov, and Y. Xu, Error-correcting codes for fermionic quantum simulation, arXiv preprint arXiv:2210.08411 (2022).
- P. Jordan and E. Wigner, über das paulische äquivalenzverbot, Zeitschrift für Physik 47, 631 (1928).
- V. Havlíček, M. Troyer, and J. D. Whitfield, Operator locality in the quantum simulation of fermionic models, Physical Review A 95, 032332 (2017).
- M. Steudtner and S. Wehner, Fermion-to-qubit mappings with varying resource requirements for quantum simulation, New Journal of Physics 20, 063010 (2018).
- R. W. Chien and J. Klassen, Optimizing fermionic encodings for both hamiltonian and hardware, arXiv preprint arXiv:2210.05652 (2022).
- M. Chiew and S. Strelchuk, Discovering optimal fermion-qubit mappings through algorithmic enumeration, Quantum 7, 1145 (2023).
- F. Verstraete and J. I. Cirac, Mapping local hamiltonians of fermions to local hamiltonians of spins, Journal of Statistical Mechanics: Theory and Experiment 2005, P09012 (2005).
- R. Ball, Fermions without fermion fields, Physical review letters 95, 176407 (2005).
- M. Steudtner and S. Wehner, Lowering qubit requirements for quantum simulations of fermionic systems, arXiv preprint arXiv:1712.07067 (2017).
- Y.-A. Chen, A. Kapustin, and Đ. Radičević, Exact bosonization in two spatial dimensions and a new class of lattice gauge theories, Annals of Physics 393, 234 (2018).
- A. Vardy, The intractability of computing the minimum distance of a code, IEEE Transactions on Information Theory 43, 1757 (1997).
- U. Kapshikar and S. Kundu, On the hardness of the minimum distance problem of quantum codes, IEEE Transactions on Information Theory 69, 6293 (2023).
- S. Aaronson and D. Gottesman, Improved simulation of stabilizer circuits, Physical Review A 70, 052328 (2004).
- D. Gottesman, Theory of fault-tolerant quantum computation, Phys. Rev. A 57, 127 (1998a).
- D. Gottesman, The heisenberg representation of quantum computers (1998b), arXiv:quant-ph/9807006 [quant-ph] .
- Y.-A. Chen and Y. Xu, Equivalence between fermion-to-qubit mappings in two spatial dimensions, PRX Quantum 4, 010326 (2023a).
- A. J. Landahl and B. C. A. Morrison, Logical fermions for fault-tolerant quantum simulation (2023), arXiv:2110.10280 [quant-ph] .
- M. Ozols, Clifford group (2008).
- Y.-A. Chen and Y. Xu, Equivalence between fermion-to-qubit mappings in two spatial dimensions, PRX Quantum 4, 010326 (2023b).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.