Subconvexity Implies Effective Quantum Unique Ergodicity for Hecke-Maaß Cusp Forms on $\mathrm{SL}_2(\mathbb{Z}) \backslash \mathrm{SL}_2(\mathbb{R})$ (2402.14050v2)
Abstract: It is a folklore result in arithmetic quantum chaos that quantum unique ergodicity on the modular surface with an effective rate of convergence follows from subconvex bounds for certain triple product $L$-functions. The physical space manifestation of this result, namely the equidistribution of mass of Hecke-Maass cusp forms, was proven to follow from subconvexity by Watson, whereas the phase space manifestation of quantum unique ergodicity has only previously appeared in the literature for Eisenstein series via work of Jakobson. We detail the analogous phase space result for Hecke-Maass cusp forms. The proof relies on the Watson-Ichino triple product formula together with a careful analysis of certain archimedean integrals of Whittaker functions.
- W. Duke, J. B. Friedlander, and H. Iwaniec, “The Subconvexity Problem for Artin L𝐿Litalic_L-Functions”, Inventiones Mathematicae 149:3 (2002), 489–577.
- Semyon Dyatlov, “Around Quantum Ergodicity”, Annales mathématiques du Québec 46:1 (2022), 11–26.
- Dorian Goldfeld, Jeffrey Hoffstein and Daniel Lieman, “An Effective Zero-Free Region”, appendix to “Coefficients of Maass Forms and the Siegel Zero” by Jeffrey Hoffstein and Paul Lockhart, Annals of Mathematics 140:1 (1994), 177–181.
- Anton Good, “The Square Mean of Dirichlet Series Associated with Cusp Forms”, Mathematika 29:2 (1982), 278–295.
- Andrew Hassell, “Ergodic Billiards That Are Not Quantum Unique Ergodic”, Annals of Mathematics 171:1 (2010), 605–619.
- Peter Humphries and Asbjørn Christian Nordentoft, “Sparse Equidistribution of Geometric Invariants of Real Quadratic Fields”, preprint (2022), 57 pages.
- Atsushi Ichino, “Trilinear Forms and the Central Values of Triple Product L𝐿Litalic_L-Functions”, Duke Mathematical Journal 145:2 (2008), 281–307.
- Dmitry Jakobson, “Quantum Unique Ergodicity for Eisenstein Series on PSL2(ℤ)\PSL2(ℝ)\subscriptPSL2ℤsubscriptPSL2ℝ\mathrm{PSL}_{2}(\mathbb{Z})\backslash\mathrm{PSL}_{2}(\mathbb{R})roman_PSL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_Z ) \ roman_PSL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R )”, Annales de l’Institut Fourier 44:5 (1994), 1477–1504.
- Dmitri Jakobson, “Equidistribution of Cusp Forms on PSL2(ℝ)subscriptPSL2ℝ\mathrm{PSL}_{2}(\mathbb{R})roman_PSL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R )”, Annales de l’Institut Fourier 47:3 (1997), 967–984.
- Xiannan Li, “Upper Bounds on L𝐿Litalic_L-Functions at the Edge of the Critical Strip”, International Mathematics Research Notices 2010:4 (2010), 727–755.
- Elon Lindenstrauss, “On Quantum Unique Ergodicity for Γ\ℍ×ℍ\Γℍℍ\Gamma\backslash\mathbb{H}\times\mathbb{H}roman_Γ \ blackboard_H × blackboard_H”, International Mathematics Research Notices 2001:17 (2001), 165–219.
- Elon Lindenstrauss, “Invariant Measures and Arithmetic Quantum Unique Ergodicity”, Annals of Mathematics 163:1 (2006), 165–219.
- Wenzhi Luo and Peter Sarnak, “Quantum Ergodicity of Eigenfunctions on PSL2(ℤ)\ℍ2\subscriptPSL2ℤsuperscriptℍ2\mathrm{PSL}_{2}(\mathbb{Z})\backslash\mathbb{H}^{2}roman_PSL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_Z ) \ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT”, Publications Mathématiques de l’Institut des Hautes Études Scientifiques 81 (1995), 207–237.
- Simon Marshall, “Triple Product L𝐿Litalic_L-Functions and Quantum Chaos on SL(2,ℂ)𝑆𝐿2ℂSL(2,\mathbb{C})italic_S italic_L ( 2 , blackboard_C )”, Israel Journal of Mathematics 200:1 (2014), 423–448.
- Philippe Michel and Akshay Venkatesh, “The Subconvexity Problem for GL2subscriptGL2\mathrm{GL}_{2}roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT”, Publications Mathématiques de l’Institut des Hautes Études Scientifiques 111 (2010), 171–271.
- Zeév Rudnick and Peter Sarnak, “The Behaviour of Eigenstates of Arithmetic Hyperbolic Manifolds”, Communications in Mathematical Physics 161:1 (1994), 195–213.
- Peter Sarnak, “Recent Progress on the Quantum Unique Ergodicity Conjecture”, Bulletin of the American Mathematical Society 48:2 (2011), 211–228.
- P. Sarnak and P. Zhao, “The Quantum Variance on the Modular Surface”, Annales Scientifiques de l’École Normale Supérieure 52:5 (2019), 1155–1200.
- Alexander Shnirelman, “Ergodic Properties of Eigenfunctions”, Uspekhi Matematicheskikh Nauk 29 (1974), 181–182.
- Kannan Soundararajan, “Quantum Unique Ergodicity for SL2(ℤ)\ℍ\subscriptSL2ℤℍ\mathrm{SL}_{2}(\mathbb{Z})\backslash\mathbb{H}roman_SL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_Z ) \ blackboard_H”, Annals of Mathematics 172:2 (2010), 1529–1538.
- J.-L. Waldspurger, “Sur les valeurs de certaines fonctions L𝐿Litalic_L automorphes en leur centre de symétrie”, Compositio Mathematica 54:2 (1985), 173–242.
- Han Wu, “A Note on Spectral Analysis in Automorphic Representation Theory for GL2subscriptGL2\mathrm{GL}_{2}roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT: I”, International Journal of Number Theory 13:10 (2017), 2717–2750.
- Matthew P. Young, “The Quantum Unique Ergodicity Conjecture for Thin Sets”, Advances in Mathematics 286 (2016), 958–1016.
- Steven Zelditch, “Uniform Distribution of Eigenfunctions on Compact Hyperbolic Surfaces”, Duke Mathematical Journal 55:4 (1987), 919–941.
- Steven Zelditch, “Mean Lindelöf Hypothesis and Equidistribution of Cusp Forms and Eisenstein Series”, Journal of Functional Analysis 97:1 (1991), 1–49.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.