Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 62 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 137 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Tunable topological phases in nanographene-based spin-1/2 alternating-exchange Heisenberg chains (2402.13590v1)

Published 21 Feb 2024 in cond-mat.mtrl-sci, quant-ph, cond-mat.mes-hall, cond-mat.str-el, and physics.chem-ph

Abstract: Unlocking the potential of topological order within many-body spin systems has long been a central pursuit in the realm of quantum materials. Despite extensive efforts, the quest for a versatile platform enabling site-selective spin manipulation, essential for tuning and probing diverse topological phases, has persisted. Here, we utilize on-surface synthesis to construct spin-1/2 alternating-exchange Heisenberg (AH) chains[1] with antiferromagnetic couplings $J_1$ and $J_2$ by covalently linking Clar's goblets -- nanographenes each hosting two antiferromagnetically-coupled unpaired electrons[2]. Utilizing scanning tunneling microscopy, we exert atomic-scale control over the spin chain lengths, parities and exchange-coupling terminations, and probe their magnetic response by means of inelastic tunneling spectroscopy. Our investigation confirms the gapped nature of bulk excitations in the chains, known as triplons[3]. Besides, the triplon dispersion relation is successfully extracted from the spatial variation of tunneling spectral amplitudes. Furthermore, depending on the parity and termination of chains, we observe varying numbers of in-gap $S=1/2$ edge spins, enabling the determination of the degeneracy of distinct topological ground states in the thermodynamic limit-either 1, 2, or 4. By monitoring interactions between these edge spins, we identify the exponential decay of spin correlations. Our experimental findings, corroborated by theoretical calculations, present a phase-controlled many-body platform, opening promising avenues toward the development of spin-based quantum devices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. Theory of alternating antiferromagnetic Heisenberg linear chains. Physical Review 165, 647 (1968).
  2. Mishra, S. et al. Topological frustration induces unconventional magnetism in a nanographene. Nature Nanotechnology 15, 22–28 (2020).
  3. Modified triplet-wave expansion method applied to the alternating Heisenberg chain. Phys. Rev. B 74, 144414 (2006).
  4. Kiczynski, M. et al. Engineering topological states in atom-based semiconductor quantum dots. Nature 606, 694–699 (2022).
  5. Sompet, P. et al. Realizing the symmetry-protected Haldane phase in Fermi–Hubbard ladders. Nature 606, 484–488 (2022).
  6. Mishra, S. et al. Observation of fractional edge excitations in nanographene spin chains. Nature 598, 287–292 (2021).
  7. Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).
  8. Kitaev materials. Physics Reports 950, 1–37 (2022).
  9. Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650–654 (2021).
  10. Topological Kondo insulators. Physical Review Letters 104, 106408 (2010).
  11. Colloquium: topological insulators. Reviews of Modern Physics 82, 3045 (2010).
  12. Topological insulators and superconductors. Reviews of Modern Physics 83, 1057 (2011).
  13. Quantum spin liquids: a review. Reports on Progress in Physics 80, 016502 (2016).
  14. Quantum spin liquid states. Reviews of Modern Physics 89, 025003 (2017).
  15. Grohol, D. et al. Spin chirality on a two-dimensional frustrated lattice. Nature Materials 4, 323–328 (2005).
  16. Solitons in polyacetylene. Physical Review Letters 42, 1698 (1979).
  17. Hida, K. Crossover between the Haldane-gap phase and the dimer phase in the spin-1/2 alternating Heisenberg chain. Physical Review B 45, 2207 (1992).
  18. Classification of gapped symmetric phases in one-dimensional spin systems. Physical Review B 83, 035107 (2011).
  19. Order parameter to characterize valence-bond-solid states in quantum spin chains. Physical Review Letters 89, 077204 (2002).
  20. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).
  21. Real-space imaging of triplon excitations in engineered quantum magnets. Physical Review Letters 131, 086701 (2023).
  22. Theoretical and experimental study of the magnetic properties of the singlet-ground-state system Cu(NO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT)⋅2{}_{2}\cdotstart_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT ⋅2.5H22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTO: An alternating linear Heisenberg antiferromagnet. Physical Review B 19, 420 (1979).
  23. Alternating linear-chain antiferromagnetism in copper nitrate Cu(NO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT)⋅2{}_{2}\cdotstart_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT ⋅2.5H22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTO. Physical Review B 27, 248 (1983).
  24. Magnetic Excitations in the S= 1/2 Alternating Chain Compound (VO)22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTP22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTO77{}_{7}start_FLOATSUBSCRIPT 7 end_FLOATSUBSCRIPT. Physical Review Letters 79, 745 (1997).
  25. The antiferromagnetic structure of copper tungstate, CuWO4. Journal of Physics: Condensed Matter 3, 8433 (1991).
  26. A dimer theory of the magnetic excitations in the ordered phase of the alternating-chain compound. Journal of Physics: Condensed Matter 9, 10951 (1997).
  27. Waki, T. et al. Observation of Bose-Einstein condensation of triplons in quasi 1D spin-gap system Pb22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTV33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPTO99{}_{9}start_FLOATSUBSCRIPT 9 end_FLOATSUBSCRIPT. Journal of the Physical Society of Japan 73, 3435–3438 (2004).
  28. Interdimer exchange in linear chain copper acetate-pyrazine. Journal of the American Chemical Society 96, 97–103 (1974).
  29. Bray, J. et al. Observation of a spin-Peierls transition in a Heisenberg antiferromagnetic linear-chain system. Physical Review Letters 35, 744 (1975).
  30. Jacobs, I. et al. Spin-Peierls transitions in magnetic donor-acceptor compounds of tetrathiafulvalene (TTF) with bisdithiolene metal complexes. Physical Review B 14, 3036 (1976).
  31. Quantum Magnetism of CuGeO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT. Physical Review Letters 75, 1823 (1995).
  32. Magnetic susceptibility in the spin-Peierls system CuGeO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT. Physical Review B 51, 16098 (1995).
  33. Observation of the spin-Peierls transition in linear Cu2+limit-from2{}^{2+}start_FLOATSUPERSCRIPT 2 + end_FLOATSUPERSCRIPT(spin-1/2) chains in an inorganic compound CuGeO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT. Physical Review Letters 70, 3651 (1993).
  34. Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).
  35. Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).
  36. Rizzo, D. J. et al. Topological band engineering of graphene nanoribbons. Nature 560, 204–208 (2018).
  37. Blackwell, R. E. et al. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons. Nature 600, 647–652 (2021).
  38. Ortiz, R. et al. Exchange rules for diradical π𝜋\piitalic_π-conjugated hydrocarbons. Nano Letters 19, 5991–5997 (2019).
  39. Mishra, S. et al. Large magnetic exchange coupling in rhombus-shaped nanographenes with zigzag periphery. Nature Chemistry 13, 581–586 (2021).
  40. Cheng, S. et al. On-surface synthesis of triangulene trimers via dehydration reaction. Nature Communications 13, 1705 (2022).
  41. Wang, T. et al. Aza-triangulene: on-surface synthesis and electronic and magnetic properties. Journal of the American Chemical Society 144, 4522–4529 (2022).
  42. Tunneling into a single magnetic atom: spectroscopic evidence of the Kondo resonance. Science 280, 567–569 (1998).
  43. Spin coupling in engineered atomic structures. Science 312, 1021–1024 (2006).
  44. Zhao, C. et al. Tailoring Magnetism of Graphene Nanoflakes via Tip-Controlled Dehydrogenation. Physical Review Letters 132, 046201 (2024).
  45. Krane, N. et al. Exchange interactions and intermolecular hybridization in a spin-1/2 nanographene dimer. Nano letters 23, 9353–9359 (2023).
  46. Magnetic edge anisotropy in graphenelike honeycomb crystals. Physical Review Letters 113, 027203 (2014).
  47. Fernández-Rossier, J. Theory of Single-Spin Inelastic Tunneling Spectroscopy. Physical Review Letters 102, 256802 (2009).
  48. Ternes, M. Spin excitations and correlations in scanning tunneling spectroscopy. New Journal of Physics 17, 063016 (2015).
  49. White, S. R. Density matrix formulation for quantum renormalization groups. Physical Review Letters 69, 2863 (1992).
  50. Topological quantum phase transition in bond-alternating spin-1/2 Heisenberg chains. Physical Review B 87, 054402 (2013).
  51. Ochsenbein, S. et al. Standing spin waves in an antiferromagnetic molecular Cr6 horseshoe. Europhysics Letters 79, 17003 (2007).
  52. Inelastic electron tunneling spectroscopy: Capabilities and limitations in metal–oxide–semiconductor devices. Journal of Applied Physics 91, 5896–5901 (2002).
  53. Kennedy, T. Exact diagonalisations of open spin-1 chains. Journal of Physics: Condensed Matter 2, 5737 (1990).
  54. S= 1/2 alternating chain using multiprecision methods. Physical Review B 59, 11384 (1999).
  55. Theory of intermolecular exchange in coupled spin-1/2 nanographenes. Physical Review B 106, 205405 (2022).
  56. Appelbaum, J. A. Exchange Model of Zero-Bias Tunneling Anomalies. Phys. Rev. 154, 633–643 (1967).
  57. QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems part I: spin chains. SciPost Phys. 2, 003 (2017).
Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 27 likes.