Tunable topological phases in nanographene-based spin-1/2 alternating-exchange Heisenberg chains (2402.13590v1)
Abstract: Unlocking the potential of topological order within many-body spin systems has long been a central pursuit in the realm of quantum materials. Despite extensive efforts, the quest for a versatile platform enabling site-selective spin manipulation, essential for tuning and probing diverse topological phases, has persisted. Here, we utilize on-surface synthesis to construct spin-1/2 alternating-exchange Heisenberg (AH) chains[1] with antiferromagnetic couplings $J_1$ and $J_2$ by covalently linking Clar's goblets -- nanographenes each hosting two antiferromagnetically-coupled unpaired electrons[2]. Utilizing scanning tunneling microscopy, we exert atomic-scale control over the spin chain lengths, parities and exchange-coupling terminations, and probe their magnetic response by means of inelastic tunneling spectroscopy. Our investigation confirms the gapped nature of bulk excitations in the chains, known as triplons[3]. Besides, the triplon dispersion relation is successfully extracted from the spatial variation of tunneling spectral amplitudes. Furthermore, depending on the parity and termination of chains, we observe varying numbers of in-gap $S=1/2$ edge spins, enabling the determination of the degeneracy of distinct topological ground states in the thermodynamic limit-either 1, 2, or 4. By monitoring interactions between these edge spins, we identify the exponential decay of spin correlations. Our experimental findings, corroborated by theoretical calculations, present a phase-controlled many-body platform, opening promising avenues toward the development of spin-based quantum devices.
- Theory of alternating antiferromagnetic Heisenberg linear chains. Physical Review 165, 647 (1968).
- Mishra, S. et al. Topological frustration induces unconventional magnetism in a nanographene. Nature Nanotechnology 15, 22–28 (2020).
- Modified triplet-wave expansion method applied to the alternating Heisenberg chain. Phys. Rev. B 74, 144414 (2006).
- Kiczynski, M. et al. Engineering topological states in atom-based semiconductor quantum dots. Nature 606, 694–699 (2022).
- Sompet, P. et al. Realizing the symmetry-protected Haldane phase in Fermi–Hubbard ladders. Nature 606, 484–488 (2022).
- Mishra, S. et al. Observation of fractional edge excitations in nanographene spin chains. Nature 598, 287–292 (2021).
- Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).
- Kitaev materials. Physics Reports 950, 1–37 (2022).
- Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650–654 (2021).
- Topological Kondo insulators. Physical Review Letters 104, 106408 (2010).
- Colloquium: topological insulators. Reviews of Modern Physics 82, 3045 (2010).
- Topological insulators and superconductors. Reviews of Modern Physics 83, 1057 (2011).
- Quantum spin liquids: a review. Reports on Progress in Physics 80, 016502 (2016).
- Quantum spin liquid states. Reviews of Modern Physics 89, 025003 (2017).
- Grohol, D. et al. Spin chirality on a two-dimensional frustrated lattice. Nature Materials 4, 323–328 (2005).
- Solitons in polyacetylene. Physical Review Letters 42, 1698 (1979).
- Hida, K. Crossover between the Haldane-gap phase and the dimer phase in the spin-1/2 alternating Heisenberg chain. Physical Review B 45, 2207 (1992).
- Classification of gapped symmetric phases in one-dimensional spin systems. Physical Review B 83, 035107 (2011).
- Order parameter to characterize valence-bond-solid states in quantum spin chains. Physical Review Letters 89, 077204 (2002).
- Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).
- Real-space imaging of triplon excitations in engineered quantum magnets. Physical Review Letters 131, 086701 (2023).
- Theoretical and experimental study of the magnetic properties of the singlet-ground-state system Cu(NO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT)⋅2{}_{2}\cdotstart_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT ⋅2.5H22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTO: An alternating linear Heisenberg antiferromagnet. Physical Review B 19, 420 (1979).
- Alternating linear-chain antiferromagnetism in copper nitrate Cu(NO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT)⋅2{}_{2}\cdotstart_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT ⋅2.5H22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTO. Physical Review B 27, 248 (1983).
- Magnetic Excitations in the S= 1/2 Alternating Chain Compound (VO)22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTP22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTO77{}_{7}start_FLOATSUBSCRIPT 7 end_FLOATSUBSCRIPT. Physical Review Letters 79, 745 (1997).
- The antiferromagnetic structure of copper tungstate, CuWO4. Journal of Physics: Condensed Matter 3, 8433 (1991).
- A dimer theory of the magnetic excitations in the ordered phase of the alternating-chain compound. Journal of Physics: Condensed Matter 9, 10951 (1997).
- Waki, T. et al. Observation of Bose-Einstein condensation of triplons in quasi 1D spin-gap system Pb22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTV33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPTO99{}_{9}start_FLOATSUBSCRIPT 9 end_FLOATSUBSCRIPT. Journal of the Physical Society of Japan 73, 3435–3438 (2004).
- Interdimer exchange in linear chain copper acetate-pyrazine. Journal of the American Chemical Society 96, 97–103 (1974).
- Bray, J. et al. Observation of a spin-Peierls transition in a Heisenberg antiferromagnetic linear-chain system. Physical Review Letters 35, 744 (1975).
- Jacobs, I. et al. Spin-Peierls transitions in magnetic donor-acceptor compounds of tetrathiafulvalene (TTF) with bisdithiolene metal complexes. Physical Review B 14, 3036 (1976).
- Quantum Magnetism of CuGeO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT. Physical Review Letters 75, 1823 (1995).
- Magnetic susceptibility in the spin-Peierls system CuGeO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT. Physical Review B 51, 16098 (1995).
- Observation of the spin-Peierls transition in linear Cu2+limit-from2{}^{2+}start_FLOATSUPERSCRIPT 2 + end_FLOATSUPERSCRIPT(spin-1/2) chains in an inorganic compound CuGeO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT. Physical Review Letters 70, 3651 (1993).
- Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).
- Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).
- Rizzo, D. J. et al. Topological band engineering of graphene nanoribbons. Nature 560, 204–208 (2018).
- Blackwell, R. E. et al. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons. Nature 600, 647–652 (2021).
- Ortiz, R. et al. Exchange rules for diradical π𝜋\piitalic_π-conjugated hydrocarbons. Nano Letters 19, 5991–5997 (2019).
- Mishra, S. et al. Large magnetic exchange coupling in rhombus-shaped nanographenes with zigzag periphery. Nature Chemistry 13, 581–586 (2021).
- Cheng, S. et al. On-surface synthesis of triangulene trimers via dehydration reaction. Nature Communications 13, 1705 (2022).
- Wang, T. et al. Aza-triangulene: on-surface synthesis and electronic and magnetic properties. Journal of the American Chemical Society 144, 4522–4529 (2022).
- Tunneling into a single magnetic atom: spectroscopic evidence of the Kondo resonance. Science 280, 567–569 (1998).
- Spin coupling in engineered atomic structures. Science 312, 1021–1024 (2006).
- Zhao, C. et al. Tailoring Magnetism of Graphene Nanoflakes via Tip-Controlled Dehydrogenation. Physical Review Letters 132, 046201 (2024).
- Krane, N. et al. Exchange interactions and intermolecular hybridization in a spin-1/2 nanographene dimer. Nano letters 23, 9353–9359 (2023).
- Magnetic edge anisotropy in graphenelike honeycomb crystals. Physical Review Letters 113, 027203 (2014).
- Fernández-Rossier, J. Theory of Single-Spin Inelastic Tunneling Spectroscopy. Physical Review Letters 102, 256802 (2009).
- Ternes, M. Spin excitations and correlations in scanning tunneling spectroscopy. New Journal of Physics 17, 063016 (2015).
- White, S. R. Density matrix formulation for quantum renormalization groups. Physical Review Letters 69, 2863 (1992).
- Topological quantum phase transition in bond-alternating spin-1/2 Heisenberg chains. Physical Review B 87, 054402 (2013).
- Ochsenbein, S. et al. Standing spin waves in an antiferromagnetic molecular Cr6 horseshoe. Europhysics Letters 79, 17003 (2007).
- Inelastic electron tunneling spectroscopy: Capabilities and limitations in metal–oxide–semiconductor devices. Journal of Applied Physics 91, 5896–5901 (2002).
- Kennedy, T. Exact diagonalisations of open spin-1 chains. Journal of Physics: Condensed Matter 2, 5737 (1990).
- S= 1/2 alternating chain using multiprecision methods. Physical Review B 59, 11384 (1999).
- Theory of intermolecular exchange in coupled spin-1/2 nanographenes. Physical Review B 106, 205405 (2022).
- Appelbaum, J. A. Exchange Model of Zero-Bias Tunneling Anomalies. Phys. Rev. 154, 633–643 (1967).
- QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems part I: spin chains. SciPost Phys. 2, 003 (2017).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.