Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative AI for Physical Layer Communications: A Survey (2312.05594v1)

Published 9 Dec 2023 in cs.NI and cs.AI

Abstract: The recent evolution of generative artificial intelligence (GAI) leads to the emergence of groundbreaking applications such as ChatGPT, which not only enhances the efficiency of digital content production, such as text, audio, video, or even network traffic data, but also enriches its diversity. Beyond digital content creation, GAI's capability in analyzing complex data distributions offers great potential for wireless communications, particularly amidst a rapid expansion of new physical layer communication technologies. For example, the diffusion model can learn input signal distributions and use them to improve the channel estimation accuracy, while the variational autoencoder can model channel distribution and infer latent variables for blind channel equalization. Therefore, this paper presents a comprehensive investigation of GAI's applications for communications at the physical layer, ranging from traditional issues, including signal classification, channel estimation, and equalization, to emerging topics, such as intelligent reflecting surfaces and joint source channel coding. We also compare GAI-enabled physical layer communications with those supported by traditional AI, highlighting GAI's inherent capabilities and unique contributions in these areas. Finally, the paper discusses open issues and proposes several future research directions, laying a foundation for further exploration and advancement of GAI in physical layer communications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (137)
  1. P. P. Ray, “Chatgpt: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope,” Internet of Things and Cyber-Physical Systems, 2023.
  2. J. Wang, H. Du, D. Niyato, Z. Xiong, J. Kang, S. Mao et al., “Guiding ai-generated digital content with wireless perception,” arXiv preprint arXiv:2303.14624, 2023.
  3. H. Du, R. Zhang, Y. Liu, J. Wang, Y. Lin, Z. Li, D. Niyato, J. Kang, Z. Xiong, S. Cui et al., “Beyond deep reinforcement learning: A tutorial on generative diffusion models in network optimization,” arXiv preprint arXiv:2308.05384, 2023.
  4. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 10 684–10 695.
  5. S. Liu, T. Wang, and S. Wang, “Toward intelligent wireless communications: Deep learning-based physical layer technologies,” Digital Communications and Networks, vol. 7, no. 4, pp. 589–597, 2021.
  6. T. Wang, C.-K. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, “Deep learning for wireless physical layer: Opportunities and challenges,” China Communications, vol. 14, no. 11, pp. 92–111, 2017.
  7. S. M. Aldossari and K.-C. Chen, “Machine learning for wireless communication channel modeling: An overview,” Wireless Personal Communications, vol. 106, pp. 41–70, 2019.
  8. R. Sattiraju, A. Weinand, and H. D. Schotten, “Performance analysis of deep learning based on recurrent neural networks for channel coding,” in 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS).   IEEE, 2018, pp. 1–6.
  9. M. Vahdat, K. P. Roshandeh, M. Ardakani, and H. Jiang, “Papr reduction scheme for deep learning-based communication systems using autoencoders,” in 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring).   IEEE, 2020, pp. 1–5.
  10. S. Jo and J. So, “Adaptive lightweight cnn-based csi feedback for massive mimo systems,” IEEE Wireless Communications Letters, vol. 10, no. 12, pp. 2776–2780, 2021.
  11. L. Sun, Y. Wang, A. L. Swindlehurst, and X. Tang, “Generative-adversarial-network enabled signal detection for communication systems with unknown channel models,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 1, pp. 47–60, 2020.
  12. H. Ye, L. Liang, G. Y. Li, and B.-H. Juang, “Deep learning-based end-to-end wireless communication systems with conditional gans as unknown channels,” IEEE Transactions on Wireless Communications, vol. 19, no. 5, pp. 3133–3143, 2020.
  13. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.
  14. D. Zhang, J. Zhao, L. Yang, Y. Nie, and X. Lin, “Generative adversarial network-based channel estimation in high-speed mobile scenarios,” in 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP).   IEEE, 2021, pp. 1–5.
  15. B. Tolba, M. Elsabrouty, M. G. Abdu-Aguye, H. Gacanin, and H. M. Kasem, “Massive mimo csi feedback based on generative adversarial network,” IEEE Communications Letters, vol. 24, no. 12, pp. 2805–2808, 2020.
  16. H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. N. Metaxas, “Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 5907–5915.
  17. C. Wang, C. Xu, C. Wang, and D. Tao, “Perceptual adversarial networks for image-to-image transformation,” IEEE Transactions on Image Processing, vol. 27, no. 8, pp. 4066–4079, 2018.
  18. J. Gui, Z. Sun, Y. Wen, D. Tao, and J. Ye, “A review on generative adversarial networks: Algorithms, theory, and applications,” IEEE transactions on knowledge and data engineering, 2021.
  19. C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint arXiv:1606.05908, 2016.
  20. F. P. Casale, A. Dalca, L. Saglietti, J. Listgarten, and N. Fusi, “Gaussian process prior variational autoencoders,” Advances in neural information processing systems, vol. 31, 2018.
  21. T. Zhao and F. Li, “Variational-autoencoder signal detection for mimo-ofdm-im,” Digital Signal Processing, vol. 118, p. 103230, 2021.
  22. Y. Li, X. Chen, and X. Deng, “Joint source-channel coding for a multivariate gaussian over a gaussian mac using variational domain adaptation,” IEEE Transactions on Cognitive Communications and Networking, 2023.
  23. I. Kobyzev, S. J. Prince, and M. A. Brubaker, “Normalizing flows: An introduction and review of current methods,” IEEE transactions on pattern analysis and machine intelligence, vol. 43, no. 11, pp. 3964–3979, 2020.
  24. L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using real nvp,” arXiv preprint arXiv:1605.08803, 2016.
  25. G. Papamakarios, T. Pavlakou, and I. Murray, “Masked autoregressive flow for density estimation,” Advances in neural information processing systems, vol. 30, 2017.
  26. K. He, L. He, L. Fan, Y. Deng, G. K. Karagiannidis, and A. Nallanathan, “Learning-based signal detection for mimo systems with unknown noise statistics,” IEEE Transactions on Communications, vol. 69, no. 5, pp. 3025–3038, 2021.
  27. L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, Y. Shao, W. Zhang, B. Cui, and M.-H. Yang, “Diffusion models: A comprehensive survey of methods and applications,” arXiv preprint arXiv:2209.00796, 2022.
  28. U. Sengupta, C. Jao, A. Bernacchia, S. Vakili, and D.-s. Shiu, “Generative diffusion models for radio wireless channel modelling and sampling,” arXiv preprint arXiv:2308.05583, 2023.
  29. F.-A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah, “Diffusion models in vision: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
  30. Z. Chen, F. Gu, and R. Jiang, “Channel estimation method based on transformer in high dynamic environment,” in 2020 International Conference on Wireless Communications and Signal Processing (WCSP).   IEEE, 2020, pp. 817–822.
  31. A. Oussidi and A. Elhassouny, “Deep generative models: Survey,” in 2018 International conference on intelligent systems and computer vision (ISCV).   IEEE, 2018, pp. 1–8.
  32. Y. Cao, S. Li, Y. Liu, Z. Yan, Y. Dai, P. S. Yu, and L. Sun, “A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt,” arXiv preprint arXiv:2303.04226, 2023.
  33. S. Bond-Taylor, A. Leach, Y. Long, and C. G. Willcocks, “Deep generative modelling: A comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models,” IEEE transactions on pattern analysis and machine intelligence, 2021.
  34. G. Harshvardhan, M. K. Gourisaria, M. Pandey, and S. S. Rautaray, “A comprehensive survey and analysis of generative models in machine learning,” Computer Science Review, vol. 38, p. 100285, 2020.
  35. C. Zhang, C. Zhang, S. Zheng, Y. Qiao, C. Li, M. Zhang, S. K. Dam, C. M. Thwal, Y. L. Tun, L. L. Huy et al., “A complete survey on generative ai (aigc): Is chatgpt from gpt-4 to gpt-5 all you need?” arXiv preprint arXiv:2303.11717, 2023.
  36. D. Baidoo-Anu and L. O. Ansah, “Education in the era of generative artificial intelligence (ai): Understanding the potential benefits of chatgpt in promoting teaching and learning,” Journal of AI, vol. 7, no. 1, pp. 52–62, 2023.
  37. S. De, M. Bermudez-Edo, H. Xu, and Z. Cai, “Deep generative models in the industrial internet of things: a survey,” IEEE Transactions on Industrial Informatics, vol. 18, no. 9, pp. 5728–5737, 2022.
  38. H. X. Qin and P. Hui, “Empowering the metaverse with generative ai: Survey and future directions,” in 2023 IEEE 43rd International Conference on Distributed Computing Systems Workshops (ICDCSW).   IEEE, 2023, pp. 85–90.
  39. A. Karapantelakis, P. Alizadeh, A. Alabassi, K. Dey, and A. Nikou, “Generative ai in mobile networks: a survey,” Annals of Telecommunications, pp. 1–19, 2023.
  40. Z. Qin, H. Ye, G. Y. Li, and B.-H. F. Juang, “Deep learning in physical layer communications,” IEEE Wireless Communications, vol. 26, no. 2, pp. 93–99, 2019.
  41. T. O’shea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE Transactions on Cognitive Communications and Networking, vol. 3, no. 4, pp. 563–575, 2017.
  42. H. Kim, S. Oh, and P. Viswanath, “Physical layer communication via deep learning,” IEEE Journal on Selected Areas in Information Theory, vol. 1, no. 1, pp. 5–18, 2020.
  43. H. Sharma and N. Kumar, “Deep learning based physical layer security for terrestrial communications in 5g and beyond networks: A survey,” Physical Communication, p. 102002, 2023.
  44. A. K. Kamboj, P. Jindal, and P. Verma, “Machine learning-based physical layer security: techniques, open challenges, and applications,” Wireless Networks, vol. 27, pp. 5351–5383, 2021.
  45. F. Restuccia and T. Melodia, “Deep learning at the physical layer: System challenges and applications to 5g and beyond,” IEEE Communications Magazine, vol. 58, no. 10, pp. 58–64, 2020.
  46. T. Xu and I. Darwazeh, “Wavelet classification for non-cooperative non-orthogonal signal communications,” in 2020 IEEE Globecom Workshops (GC Wkshps.   IEEE, 2020, pp. 1–6.
  47. C. Liu, Z. Wei, D. W. K. Ng, J. Yuan, and Y.-C. Liang, “Deep transfer learning for signal detection in ambient backscatter communications,” IEEE Transactions on Wireless Communications, vol. 20, no. 3, pp. 1624–1638, 2020.
  48. N. Van Huynh and G. Y. Li, “Transfer learning for signal detection in wireless networks,” IEEE Wireless Communications Letters, vol. 11, no. 11, pp. 2325–2329, 2022.
  49. H. Du, D. Niyato, J. Kang, Z. Xiong, P. Zhang, S. Cui, X. Shen, S. Mao, Z. Han, A. Jamalipour et al., “The age of generative ai and ai-generated everything,” arXiv preprint arXiv:2311.00947, 2023.
  50. J. Wen, J. Nie, J. Kang, D. Niyato, H. Du, Y. Zhang, and M. Guizani, “From generative ai to generative internet of things: Fundamentals, framework, and outlooks,” arXiv preprint arXiv:2310.18382, 2023.
  51. N. Shlezinger, N. Farsad, Y. C. Eldar, and A. J. Goldsmith, “Viterbinet: A deep learning based viterbi algorithm for symbol detection,” IEEE Transactions on Wireless Communications, vol. 19, no. 5, pp. 3319–3331, 2020.
  52. B. Tang, Y. Tu, Z. Zhang, and Y. Lin, “Digital signal modulation classification with data augmentation using generative adversarial nets in cognitive radio networks,” IEEE Access, vol. 6, pp. 15 713–15 722, 2018.
  53. S. Lee, Y.-I. Yoon, and Y. J. Jung, “Generative adversarial network-based signal inpainting for automatic modulation classification,” IEEE Access, 2023.
  54. E. Shtaiwi, A. El Ouadrhiri, M. Moradikia, S. Sultana, A. Abdelhadi, and Z. Han, “Mixture gan for modulation classification resiliency against adversarial attacks,” in GLOBECOM 2022-2022 IEEE Global Communications Conference.   IEEE, 2022, pp. 1472–1477.
  55. M. Li, O. Li, G. Liu, and C. Zhang, “Generative adversarial networks-based semi-supervised automatic modulation recognition for cognitive radio networks,” Sensors, vol. 18, no. 11, p. 3913, 2018.
  56. C. Zhao, C. Chen, Z. He, and Z. Wu, “Application of auxiliary classifier wasserstein generative adversarial networks in wireless signal classification of illegal unmanned aerial vehicles,” Applied Sciences, vol. 8, no. 12, p. 2664, 2018.
  57. Q. Li, Z. Xiang, P. Ren, and W. Li, “Variational autoencoder based receiver for orthogonal time frequency space modulation,” Digital Signal Processing, vol. 117, p. 103170, 2021.
  58. M. A. Alawad, M. Q. Hamdan, K. A. Hamdi, C. H. Foh, and A. U. Quddus, “A new approach for an end-to-end communication system using variational auto-encoder (vae),” in GLOBECOM 2022-2022 IEEE Global Communications Conference.   IEEE, 2022, pp. 5159–5164.
  59. M. A. Alawad, M. Q. Hamdan, and K. A. Hamdi, “Innovative variational autoencoder for an end-to-end communication system,” IEEE Access, 2022.
  60. N. Samuel, T. Diskin, and A. Wiesel, “Learning to detect,” IEEE Transactions on Signal Processing, vol. 67, no. 10, pp. 2554–2564, 2019.
  61. H. Ye and G. Y. Li, “Initial results on deep learning for joint channel equalization and decoding,” in 2017 IEEE 86th vehicular technology conference (VTC-Fall).   IEEE, 2017, pp. 1–5.
  62. M. Ye, H. Zhang, and J.-B. Wang, “Channel estimation for intelligent reflecting surface aided wireless communications using conditional gan,” IEEE Communications Letters, vol. 26, no. 10, pp. 2340–2344, 2022.
  63. C. Zou, F. Yang, J. Song, and Z. Han, “Underwater wireless optical communication with one-bit quantization: A hybrid autoencoder and generative adversarial network approach,” IEEE Transactions on Wireless Communications, 2023.
  64. A. Caciularu and D. Burshtein, “Blind channel equalization using variational autoencoders,” in 2018 IEEE international conference on communications workshops (ICC Workshops).   IEEE, 2018, pp. 1–6.
  65. ——, “Unsupervised linear and nonlinear channel equalization and decoding using variational autoencoders,” IEEE Transactions on Cognitive Communications and Networking, vol. 6, no. 3, pp. 1003–1018, 2020.
  66. T. Wu, Z. Chen, D. He, L. Qian, Y. Xu, M. Tao, and W. Zhang, “Cddm: Channel denoising diffusion models for wireless communications,” arXiv preprint arXiv:2305.09161, 2023.
  67. Y. Hu, M. Yin, W. Xia, S. Rangan, and M. Mezzavilla, “Multi-frequency channel modeling for millimeter wave and thz wireless communication via generative adversarial networks,” in 2022 56th Asilomar Conference on Signals, Systems, and Computers.   IEEE, 2022, pp. 670–676.
  68. Q. Zhang, A. Ferdowsi, and W. Saad, “Distributed generative adversarial networks for mmwave channel modeling in wireless uav networks,” in ICC 2021-IEEE International Conference on Communications.   IEEE, 2021, pp. 1–6.
  69. T. Hu, Y. Huang, Q. Zhu, and Q. Wu, “Channel estimation enhancement with generative adversarial networks,” IEEE Transactions on Cognitive Communications and Networking, vol. 7, no. 1, pp. 145–156, 2020.
  70. E. Balevi and J. G. Andrews, “Wideband channel estimation with a generative adversarial network,” IEEE Transactions on Wireless Communications, vol. 20, no. 5, pp. 3049–3060, 2021.
  71. Y. Guo, Z. Qin, and O. A. Dobre, “Federated generative adversarial networks based channel estimation,” in 2022 IEEE International Conference on Communications Workshops (ICC Workshops).   IEEE, 2022, pp. 61–66.
  72. T. J. O’Shea, T. Roy, and N. West, “Approximating the void: Learning stochastic channel models from observation with variational generative adversarial networks,” in 2019 International Conference on Computing, Networking and Communications (ICNC).   IEEE, 2019, pp. 681–686.
  73. L. Wei and Z. Wang, “A variational auto-encoder model for underwater acoustic channels,” in Proceedings of the 15th International Conference on Underwater Networks & Systems, 2021, pp. 1–5.
  74. I. Rasheed, M. Asif, A. Ihsan, W. U. Khan, M. Ahmed, and K. M. Rabie, “Lstm-based distributed conditional generative adversarial network for data-driven 5g-enabled maritime uav communications,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 2, pp. 2431–2446, 2022.
  75. X. Li, A. Alkhateeb, and C. Tepedelenlioğlu, “Generative adversarial estimation of channel covariance in vehicular millimeter wave systems,” in 2018 52nd Asilomar Conference on Signals, Systems, and Computers.   IEEE, 2018, pp. 1572–1576.
  76. Q. Zhang, A. Ferdowsi, W. Saad, and M. Bennis, “Distributed conditional generative adversarial networks (gans) for data-driven millimeter wave communications in uav networks,” IEEE Transactions on Wireless Communications, vol. 21, no. 3, pp. 1438–1452, 2021.
  77. B. Banerjee, R. C. Elliott, W. A. Krzymień, and H. Farmanbar, “Downlink channel estimation for fdd massive mimo using conditional generative adversarial networks,” IEEE Transactions on Wireless Communications, vol. 22, no. 1, pp. 122–137, 2022.
  78. Q. Zhang, H. Dong, and J. Zhao, “Channel estimation for high-speed railway wireless communications: A generative adversarial network approach,” Electronics, vol. 12, no. 7, p. 1752, 2023.
  79. M. Soltani, V. Pourahmadi, A. Mirzaei, and H. Sheikhzadeh, “Deep learning-based channel estimation,” IEEE Communications Letters, vol. 23, no. 4, pp. 652–655, 2019.
  80. Y. Cai, F. Song, Y. Xu, X. Liu, X. Zhang, and H. Han, “Spectrum waterfall completion in jamming enviroment: A general adversarial networks method,” in 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), vol. 9.   IEEE, 2020, pp. 1661–1665.
  81. Y. Tang, Z. Zhao, X. Ye, S. Zheng, and L. Wang, “Jamming recognition based on ac-vaegan,” in 2020 15th IEEE International Conference on Signal Processing (ICSP), vol. 1.   IEEE, 2020, pp. 312–315.
  82. H. Han, X. Wang, F. Gu, W. Li, Y. Cai, Y. Xu, and Y. Xu, “Better late than never: Gan-enhanced dynamic anti-jamming spectrum access with incomplete sensing information,” IEEE Wireless Communications Letters, vol. 10, no. 8, pp. 1800–1804, 2021.
  83. K. Merchant and B. Nousain, “Securing iot rf fingerprinting systems with generative adversarial networks,” in MILCOM 2019-2019 IEEE Military Communications Conference (MILCOM).   IEEE, 2019, pp. 584–589.
  84. P. F. de Araujo-Filho, G. Kaddoum, M. Naili, E. T. Fapi, and Z. Zhu, “Multi-objective gan-based adversarial attack technique for modulation classifiers,” IEEE Communications Letters, vol. 26, no. 7, pp. 1583–1587, 2022.
  85. Y. Yang, L. Zhu, Q. He, and X. Deng, “A simple high-performance generation method for spoofing jamming signals,” in 2022 International Symposium on Networks, Computers and Communications (ISNCC).   IEEE, 2022, pp. 1–5.
  86. R. Meng, X. Xu, B. Wang, H. Sun, S. Xia, S. Han, and P. Zhang, “Physical-layer authentication based on hierarchical variational autoencoder for industrial internet of things,” IEEE Internet of Things Journal, vol. 10, no. 3, pp. 2528–2544, 2022.
  87. D. Roy, T. Mukherjee, M. Chatterjee, and E. Pasiliao, “Detection of rogue rf transmitters using generative adversarial nets,” in 2019 IEEE wireless communications and networking conference (WCNC).   IEEE, 2019, pp. 1–7.
  88. Y. Liu, H. Du, D. Niyato, J. Kang, Z. Xiong, D. I. Kim, and A. Jamalipour, “Deep generative model and its applications in efficient wireless network management: A tutorial and case study,” arXiv preprint arXiv:2303.17114, 2023.
  89. A. Toma, A. Krayani, M. Farrukh, H. Qi, L. Marcenaro, Y. Gao, and C. S. Regazzoni, “Ai-based abnormality detection at the phy-layer of cognitive radio by learning generative models,” IEEE Transactions on Cognitive Communications and Networking, vol. 6, no. 1, pp. 21–34, 2020.
  90. H. Han, Y. Xu, Z. Jin, W. Li, X. Chen, G. Fang, and Y. Xu, “Primary-user-friendly dynamic spectrum anti-jamming access: A gan-enhanced deep reinforcement learning approach,” IEEE Wireless Communications Letters, vol. 11, no. 2, pp. 258–262, 2021.
  91. H. Han, L. Cui, W. Li, L. Huang, Y. Cai, J. Cai, and Y. Zhang, “Radio frequency fingerprint based wireless transmitter identification against malicious attacker: An adversarial learning approach,” in 2020 International Conference on Wireless Communications and Signal Processing (WCSP).   IEEE, 2020, pp. 310–315.
  92. L. Yang, S. X. Yang, Y. Li, Y. Lu, and T. Guo, “Generative adversarial learning for trusted and secure clustering in industrial wireless sensor networks,” IEEE Transactions on Industrial Electronics, vol. 70, no. 8, pp. 8377–8387, 2022.
  93. X. Zhou, J. Xiong, X. Zhang, X. Liu, and J. Wei, “A radio anomaly detection algorithm based on modified generative adversarial network,” IEEE Wireless Communications Letters, vol. 10, no. 7, pp. 1552–1556, 2021.
  94. J. Li, X. Zhu, M. Ouyang, W. Li, Z. Chen, and Q. Fu, “Gnss spoofing jamming detection based on generative adversarial network,” IEEE Sensors Journal, vol. 21, no. 20, pp. 22 823–22 832, 2021.
  95. J. Han, Y. Zhou, G. Liu, T. Liu, and X. Zeng, “A novel physical layer key generation method based on wgan-gp adversarial autoencoder,” in 2022 4th International Conference on Communications, Information System and Computer Engineering (CISCE).   IEEE, 2022, pp. 1–6.
  96. J. Gong, X. Xu, Y. Qin, and W. Dong, “A generative adversarial network based framework for specific emitter characterization and identification,” in 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP).   IEEE, 2019, pp. 1–6.
  97. Y. Shi, K. Davaslioglu, and Y. E. Sagduyu, “Generative adversarial network for wireless signal spoofing,” in Proceedings of the ACM Workshop on Wireless Security and Machine Learning, 2019, pp. 55–60.
  98. T. Erpek, Y. E. Sagduyu, and Y. Shi, “Deep learning for launching and mitigating wireless jamming attacks,” IEEE Transactions on Cognitive Communications and Networking, vol. 5, no. 1, pp. 2–14, 2018.
  99. T. Roy, T. O’Shea, and N. West, “Generative adversarial radio spectrum networks,” in Proceedings of the ACM Workshop on Wireless Security and Machine Learning, 2019, pp. 12–15.
  100. W. Fan, F. Zhou, and T. Tian, “A deceptive jamming template synthesis method for sar using generative adversarial nets,” in IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium.   IEEE, 2020, pp. 6926–6929.
  101. K. S. Germain and F. Kragh, “Physical-layer authentication using channel state information and machine learning,” in 2020 14th International Conference on Signal Processing and Communication Systems (ICSPCS).   IEEE, 2020, pp. 1–8.
  102. ——, “Mobile physical-layer authentication using channel state information and conditional recurrent neural networks,” in 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring).   IEEE, 2021, pp. 1–6.
  103. Y. Shi, K. Davaslioglu, and Y. E. Sagduyu, “Generative adversarial network in the air: Deep adversarial learning for wireless signal spoofing,” IEEE Transactions on Cognitive Communications and Networking, vol. 7, no. 1, pp. 294–303, 2020.
  104. B. Barnes-Cook and T. O’Shea, “Scalable wireless anomaly detection with generative-lstms on rf post-detection metadata,” in 2022 IEEE Wireless Communications and Networking Conference (WCNC).   IEEE, 2022, pp. 483–488.
  105. S. Xia, X. Tao, N. Li, S. Wang, T. Sui, H. Wu, J. Xu, and Z. Han, “Multiple correlated attributes based physical layer authentication in wireless networks,” IEEE Transactions on Vehicular Technology, vol. 70, no. 2, pp. 1673–1687, 2021.
  106. Y. Wei, M.-M. Zhao, and M.-J. Zhao, “Model-driven gan-based channel modeling for irs-aided wireless communication,” in 2021 IEEE Global Communications Conference (GLOBECOM).   IEEE, 2021, pp. 1–6.
  107. ——, “Channel distribution learning: Model-driven gan-based channel modeling for irs-aided wireless communication,” IEEE Transactions on Communications, vol. 70, no. 7, pp. 4482–4497, 2022.
  108. Y. Jin, J. Zhang, C. Huang, L. Yang, H. Xiao, B. Ai, and Z. Wang, “Multiple residual dense networks for reconfigurable intelligent surfaces cascaded channel estimation,” IEEE Transactions on Vehicular Technology, vol. 71, no. 2, pp. 2134–2139, 2021.
  109. Y. Li and J. Chen, “Uplink channel estimation for intelligent reflecting surface aided wireless communication systems with condition gan,” in 2023 5th International Conference on Electronic Engineering and Informatics (EEI).   IEEE, 2023, pp. 328–333.
  110. F. Naeem, M. Qaraqe, and H. Celebi, “Joint deployment design and phase-shift of irs-assisted 6g networks: An experience-driven approach,” IEEE Internet of Things Journal, 2023.
  111. M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks,” in International conference on machine learning.   PMLR, 2017, pp. 214–223.
  112. A. M. Elbir, A. Papazafeiropoulos, P. Kourtessis, and S. Chatzinotas, “Deep channel learning for large intelligent surfaces aided mm-wave massive mimo systems,” IEEE Wireless Communications Letters, vol. 9, no. 9, pp. 1447–1451, 2020.
  113. L. Pang, Y. Li, Y. Zhang, M. Shang, Y. Chen, and A. Wang, “Mggan-based hybrid beamforming design for massive mimo systems against rank-deficient channels,” IEEE Communications Letters, vol. 26, no. 11, pp. 2804–2808, 2022.
  114. H. Ngo, H. Fang, and H. Wang, “Deep learning-based adaptive beamforming for mmwave wireless body area network,” in GLOBECOM 2020-2020 IEEE Global Communications Conference.   IEEE, 2020, pp. 1–6.
  115. M. Hussain and N. Michelusi, “Adaptive beam alignment in mm-wave networks: A deep variational autoencoder architecture,” in 2021 IEEE Global Communications Conference (GLOBECOM).   IEEE, 2021, pp. 1–6.
  116. ——, “Learning and adaptation for millimeter-wave beam tracking and training: A dual timescale variational framework,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 1, pp. 37–53, 2021.
  117. E. Balevi and J. G. Andrews, “Unfolded hybrid beamforming with gan compressed ultra-low feedback overhead,” IEEE Transactions on Wireless Communications, vol. 20, no. 12, pp. 8381–8392, 2021.
  118. Y. M. Saidutta, A. Abdi, and F. Fekri, “Joint source-channel coding over additive noise analog channels using mixture of variational autoencoders,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 7, pp. 2000–2013, 2021.
  119. J. Dai, S. Wang, K. Tan, Z. Si, X. Qin, K. Niu, and P. Zhang, “Nonlinear transform source-channel coding for semantic communications,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 8, pp. 2300–2316, 2022.
  120. E. Erdemir, T.-Y. Tung, P. L. Dragotti, and D. Gündüz, “Generative joint source-channel coding for semantic image transmission,” IEEE Journal on Selected Areas in Communications, 2023.
  121. X. Niu, X. Wang, D. Gündüz, B. Bai, W. Chen, and G. Zhou, “A hybrid wireless image transmission scheme with diffusion,” arXiv preprint arXiv:2308.08244, 2023.
  122. D. Ye, X. Wang, and X. Chen, “Lightweight generative joint source-channel coding for semantic image transmission with compressed conditional gans,” in 2023 IEEE/CIC International Conference on Communications in China (ICCC Workshops).   IEEE, 2023, pp. 1–6.
  123. T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing and improving the image quality of stylegan,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 8110–8119.
  124. X. Liang, Z. Liu, H. Chang, and L. Zhang, “Wireless channel data augmentation for artificial intelligence of things in industrial environment using generative adversarial networks,” in 2020 IEEE 18th International Conference on Industrial Informatics (INDIN), vol. 1.   IEEE, 2020, pp. 502–507.
  125. T. Zhang, K. Zhu, and D. Niyato, “A generative adversarial learning-based approach for cell outage detection in self-organizing cellular networks,” IEEE Wireless Communications Letters, vol. 9, no. 2, pp. 171–174, 2019.
  126. S. K. Vankayala, S. Kumar, I. Roy, D. Thirumulanathan, S. Yoon, and I. S. Kanakaraj, “Radio map estimation using a generative adversarial network and related business aspects,” in 2021 24th International Symposium on Wireless Personal Multimedia Communications (WPMC).   IEEE, 2021, pp. 1–6.
  127. M. Hussien, K. K. Nguyen, and M. Cheriet, “Prvnet: A novel partially-regularized variational autoencoders for massive mimo csi feedback,” in 2022 IEEE Wireless Communications and Networking Conference (WCNC).   IEEE, 2022, pp. 2286–2291.
  128. S. Zhang, A. Wijesinghe, and Z. Ding, “Rme-gan: A learning framework for radio map estimation based on conditional generative adversarial network,” IEEE Internet of Things Journal, 2023.
  129. L. Xu, L. Feng, and W. Li, “Ctgan-assisted cnn for high-resolution wireless channel delay estimation,” in 2023 IEEE 24th International Conference on High Performance Switching and Routing (HPSR).   IEEE, 2023, pp. 1–8.
  130. C.-K. Wen, W.-T. Shih, and S. Jin, “Deep learning for massive mimo csi feedback,” IEEE Wireless Communications Letters, vol. 7, no. 5, pp. 748–751, 2018.
  131. J. Guo, C.-K. Wen, S. Jin, and G. Y. Li, “Convolutional neural network-based multiple-rate compressive sensing for massive mimo csi feedback: Design, simulation, and analysis,” IEEE Transactions on Wireless Communications, vol. 19, no. 4, pp. 2827–2840, 2020.
  132. R. Levie, Ç. Yapar, G. Kutyniok, and G. Caire, “Radiounet: Fast radio map estimation with convolutional neural networks,” IEEE Transactions on Wireless Communications, vol. 20, no. 6, pp. 4001–4015, 2021.
  133. Y. Teganya and D. Romero, “Deep completion autoencoders for radio map estimation,” IEEE Transactions on Wireless Communications, vol. 21, no. 3, pp. 1710–1724, 2021.
  134. G. K. Santhanam and P. Grnarova, “Defending against adversarial attacks by leveraging an entire gan,” arXiv preprint arXiv:1805.10652, 2018.
  135. H. He, S. Jin, C.-K. Wen, F. Gao, G. Y. Li, and Z. Xu, “Model-driven deep learning for physical layer communications,” IEEE Wireless Communications, vol. 26, no. 5, pp. 77–83, 2019.
  136. H. He, C.-K. Wen, S. Jin, and G. Y. Li, “Model-driven deep learning for mimo detection,” IEEE Transactions on Signal Processing, vol. 68, pp. 1702–1715, 2020.
  137. T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-learning in neural networks: A survey,” IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 9, pp. 5149–5169, 2021.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Nguyen Van Huynh (34 papers)
  2. Jiacheng Wang (132 papers)
  3. Hongyang Du (154 papers)
  4. Dinh Thai Hoang (125 papers)
  5. Dusit Niyato (671 papers)
  6. Diep N. Nguyen (86 papers)
  7. Dong In Kim (168 papers)
  8. Khaled B. Letaief (209 papers)
Citations (16)