Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 131 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multi-messenger Astrophysics of Black Holes and Neutron Stars as Probed by Ground-based Gravitational Wave Detectors: From Present to Future (2402.13445v1)

Published 21 Feb 2024 in astro-ph.HE, astro-ph.CO, and gr-qc

Abstract: The ground-based gravitational wave (GW) detectors LIGO and Virgo have enabled the birth of multi-messenger GW astronomy via the detection of GWs from merging stellar-mass black holes (BHs) and neutron stars (NSs). GW170817, the first binary NS merger detected in GWs and all bands of the electromagnetic spectrum, is an outstanding example of the impact that GW discoveries can have on multi-messenger astronomy. Yet, GW170817 is only one of the many and varied multi-messenger sources that can be unveiled using ground-based GW detectors. In this contribution, we summarize key open questions in the astrophysics of stellar-mass BHs and NSs that can be answered using current and future-generation ground-based GW detectors, and highlight the potential for new multi-messenger discoveries ahead.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (412)
  1. IceCube-Gen2: the window to the extreme Universe. Journal of Physics G Nuclear Physics 48, 060501. 10.1088/1361-6471/abbd48
  2. Constraining High-energy Neutrino Emission from Supernovae with IceCube. ApJ 949, L12. 10.3847/2041-8213/acd2c9
  3. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity 21, 3. 10.1007/s41114-018-0012-9
  4. GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼similar-to\sim∼ 3.4 M⊙direct-product{}_{{\odot}}start_FLOATSUBSCRIPT ⊙ end_FLOATSUBSCRIPT. ApJ 892, L3. 10.3847/2041-8213/ab75f5
  5. Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Phys. Rev. D 101, 084002. 10.1103/PhysRevD.101.084002
  6. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85–88. 10.1038/nature24471
  7. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. ApJ 848, L13. 10.3847/2041-8213/aa920c
  8. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 119, 161101. 10.1103/PhysRevLett.119.161101
  9. Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. ApJ 851, L16. 10.3847/2041-8213/aa9a35
  10. GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Phys. Rev. Lett. 120, 091101. 10.1103/PhysRevLett.120.091101
  11. GW170817: Measurements of Neutron Star Radii and Equation of State. Phys. Rev. Lett. 121, 161101. 10.1103/PhysRevLett.121.161101
  12. Properties of the Binary Neutron Star Merger GW170817. Physical Review X 9, 011001. 10.1103/PhysRevX.9.011001
  13. Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. ApJ 875, 160. 10.3847/1538-4357/ab0f3d
  14. Multi-messenger Observations of a Binary Neutron Star Merger. ApJ 848, L12. 10.3847/2041-8213/aa91c9
  15. Observation of Gravitational Waves from Two Neutron Star-Black Hole Coalescences. ApJ 915, L5. 10.3847/2041-8213/ac082e
  16. Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3a. ApJ 915, 86. 10.3847/1538-4357/abee15
  17. All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Phys. Rev. D 104, 102001. 10.1103/PhysRevD.104.102001
  18. Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run. ApJ 932, 133. 10.3847/1538-4357/ac6ad0
  19. Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b. ApJ 928, 186. 10.3847/1538-4357/ac532b
  20. GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run. Physical Review X 13, 041039. 10.1103/PhysRevX.13.041039
  21. Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3. Physical Review X 13, 011048. 10.1103/PhysRevX.13.011048
  22. All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data. Phys. Rev. D 106, 102008. 10.1103/PhysRevD.106.102008
  23. Search for gravitational-wave transients associated with magnetar bursts in Advanced LIGO and Advanced Virgo data from the third observing run. arXiv e-prints , arXiv:2210.1093110.48550/arXiv.2210.10931
  24. Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity 32, 024001. 10.1088/0264-9381/32/2/024001
  25. A Model-Independent Precision Test of General Relativity using Bright Standard Sirens from ongoing and upcoming detectors. arXiv e-prints , arXiv:2312.1629210.48550/arXiv.2312.16292
  26. Targeted search for the stochastic gravitational-wave background from the galactic millisecond pulsar population. PRD 106, 043019. 10.1103/PhysRevD.106.043019
  27. The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background. ApJ 951, L8. 10.3847/2041-8213/acdac6
  28. Discovery and confirmation of the shortest gamma-ray burst from a collapsar. Nature Astronomy 5, 917–927. 10.1038/s41550-021-01428-7
  29. The Allowed Parameter Space of a Long-lived Neutron Star as the Merger Remnant of GW170817. ApJ 860, 57. 10.3847/1538-4357/aac2b7
  30. What Constraints on the Neutron Star Maximum Mass Can One Pose from GW170817 Observations? ApJ 893, 146. 10.3847/1538-4357/ab80bd
  31. Engine-fed kilonovae (mergernovae) - I. Dynamical evolution and energy injection/heating efficiencies. MNRAS 516, 2614–2628. 10.1093/mnras/stac2380
  32. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VI. Radio Constraints on a Relativistic Jet and Predictions for Late-time Emission from the Kilonova Ejecta. ApJ 848, L21. 10.3847/2041-8213/aa905d
  33. Relativistic outflows from remnants of compact object mergers and their viability for short gamma-ray bursts. A&A 436, 273–311. 10.1051/0004-6361:20041865
  34. Astrophysics with the Laser Interferometer Space Antenna. Living Reviews in Relativity 26, 2. 10.1007/s41114-022-00041-y
  35. Andersson, N. (1998). A new class of unstable modes of rotating relativistic stars. The Astrophysical Journal 502, 708–713. 10.1086/305919
  36. The R-Mode Instability in Rotating Neutron Stars. International Journal of Modern Physics D 10, 381–441. 10.1142/S0218271801001062
  37. Colloquium: Multimessenger astronomy with gravitational waves and high-energy neutrinos. Reviews of Modern Physics 85, 1401–1420. 10.1103/RevModPhys.85.1401
  38. Optimizing Cadences with Realistic Light-curve Filtering for Serendipitous Kilonova Discovery with Vera Rubin Observatory. ApJS 258, 5. 10.3847/1538-4365/ac3bae
  39. Enabling kilonova science with Nancy Grace Roman Space Telescope. Astroparticle Physics 155, 102904. 10.1016/j.astropartphys.2023.102904
  40. Gravitational-Wave Constraints on the Neutron-Star-Matter Equation of State. Phys. Rev. Lett. 120, 172703. 10.1103/PhysRevLett.120.172703
  41. Origin of the elements. A&A Rev. 31, 1. 10.1007/s00159-022-00146-x
  42. Electromagnetic counterparts of compact binary mergers. Journal of Plasma Physics 87, 845870102. 10.1017/S0022377820001646
  43. Strong Constraints on Cosmological Gravity from GW170817 and GRB 170817A. Phys. Rev. Lett. 119, 251301. 10.1103/PhysRevLett.119.251301
  44. Continued Radio Observations of GW170817 3.5 yr Post-merger. ApJ 914, L20. 10.3847/2041-8213/abfd38
  45. GW170817 4.5 Yr After Merger: Dynamical Ejecta Afterglow Constraints. ApJ 938, 12. 10.3847/1538-4357/ac9133
  46. Prospects of testing late-time cosmology with weak lensing of gravitational waves and galaxy surveys. J. Cosmology Astropart. Phys 2023, 050. 10.1088/1475-7516/2023/06/050
  47. Optimizing xg detector networks for galactic astrophysics. https://dcc.cosmicexplorer.org/public/0163/P2300010/001/CE_Science_Letter_f-mode%20-%20Matthew%20Ball.pdf
  48. Formation of black holes in the pair-instability mass gap: hydrodynamical simulations of a head-on massive star collision. MNRAS 519, 5191–5201. 10.1093/mnras/stac3752
  49. Pre-merger alert to detect prompt emission in very-high-energy gamma-rays from binary neutron star mergers: Einstein Telescope and Cherenkov Telescope Array synergy. A&A 678, A126. 10.1051/0004-6361/202345850
  50. Impact of a midband gravitational wave experiment on detectability of cosmological stochastic gravitational wave backgrounds. Phys. Rev. D 103, 123541. 10.1103/PhysRevD.103.123541
  51. Dynamics of Supernova Explosion Resulting from Pair Formation. Phys. Rev. Lett. 18, 379–381. 10.1103/PhysRevLett.18.379
  52. Radioactivity and Thermalization in the Ejecta of Compact Object Mergers and Their Impact on Kilonova Light Curves. ApJ 829, 110. 10.3847/0004-637X/829/2/110
  53. A Collapsar Origin for GRB 211211A Is (Just Barely) Possible. ApJ 947, 55. 10.3847/1538-4357/acc384
  54. Radio forensics could unmask nearby off-axis gamma-ray bursts. MNRAS 485, 4150–4159. 10.1093/mnras/stz719
  55. Prompt Merger Collapse and the Maximum Mass of Neutron Stars. Phys. Rev. Lett. 111, 131101. 10.1103/PhysRevLett.111.131101
  56. Systematics of Dynamical Mass Ejection, Nucleosynthesis, and Radioactively Powered Electromagnetic Signals from Neutron-star Mergers. ApJ 773, 78. 10.1088/0004-637X/773/1/78
  57. Equation-of-state dependence of the gravitational-wave signal from the ring-down phase of neutron-star mergers. Phys. Rev. D 86, 063001. 10.1103/PhysRevD.86.063001
  58. Neutron-star Radius Constraints from GW170817 and Future Detections. ApJ 850, L34. 10.3847/2041-8213/aa9994
  59. Unified picture of the post-merger dynamics and gravitational wave emission in neutron star mergers. Phys. Rev. D 91, 124056. 10.1103/PhysRevD.91.124056
  60. Multiwavelength Astrophysics in the Era of the ngVLA and the US ELT Program. In Bulletin of the American Astronomical Society. vol. 51, 88
  61. Common origin of black holes in high mass X-ray binaries and in gravitation-wave sources. arXiv e-prints , arXiv:2111.0940110.48550/arXiv.2111.09401
  62. The effect of pair-instability mass loss on black-hole mergers. A&A 594, A97. 10.1051/0004-6361/201628980
  63. Modified gravitational-wave propagation and standard sirens. Phys. Rev. D 98, 023510. 10.1103/PhysRevD.98.023510
  64. The unresolved stochastic background from compact binary mergers detectable by next-generation ground-based gravitational-wave observatories. arXiv e-prints , arXiv:2310.0251710.48550/arXiv.2310.02517
  65. Beloborodov, A. M. (2021). Emission of Magnetar Bursts and Precursors of Neutron Star Mergers. ApJ 921, 92. 10.3847/1538-4357/ac17e7
  66. Robust features of off-axis gamma-ray burst afterglow light curves. MNRAS 515, 555–570. 10.1093/mnras/stac1821
  67. Survival Times of Supramassive Neutron Stars Resulting from Binary Neutron Star Mergers. ApJ 920, 109. 10.3847/1538-4357/ac1678
  68. Bernuzzi, S. (2020). Neutron star merger remnants. General Relativity and Gravitation 52, 108. 10.1007/s10714-020-02752-5
  69. Bildsten, L. (1998). Gravitational Radiation and Rotation of Accreting Neutron Stars. ApJ 501, L89–L93. 10.1086/311440
  70. Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud. Phys. Rev. Lett. 58, 1494–1496. 10.1103/PhysRevLett.58.1494
  71. An Observational Upper Limit on the Rate of Gamma-Ray Bursts with Neutron Star-Black Hole Merger Progenitors. Research Notes of the American Astronomical Society 7, 136. 10.3847/2515-5172/ace258
  72. Measuring the Primordial Gravitational-Wave Background in the Presence of Astrophysical Foregrounds. Phys. Rev. Lett. 125, 241101. 10.1103/PhysRevLett.125.241101
  73. Constraining Short Gamma-Ray Burst Jet Properties with Gravitational Waves and Gamma-Rays. ApJ 893, 38. 10.3847/1538-4357/ab7eaf
  74. The Observed Offset Distribution of Gamma-Ray Bursts from Their Host Galaxies: A Robust Clue to the Nature of the Progenitors. AJ 123, 1111–1148. 10.1086/338893
  75. Gravitational waves from pulsars: emission by the magnetic-field-induced distortion. A&A 312, 675–690. 10.48550/arXiv.astro-ph/9602107
  76. Cosmology and Astrophysics with Standard Sirens and Galaxy Catalogs in View of Future Gravitational Wave Observations. arXiv e-prints , arXiv:2312.0530210.48550/arXiv.2312.05302
  77. Listening to the Universe with Next Generation Ground-Based Gravitational-Wave Detectors. arXiv e-prints , arXiv:2202.1104810.48550/arXiv.2202.11048
  78. r -process nucleosynthesis from matter ejected in binary neutron star mergers. Phys. Rev. D 96, 124005. 10.1103/PhysRevD.96.124005
  79. The GRB Prompt Emission: An Unsolved Puzzle. Galaxies 10, 38. 10.3390/galaxies10020038
  80. Science with the Einstein Telescope: a comparison of different designs. J. Cosmology Astropart. Phys 2023, 068. 10.1088/1475-7516/2023/07/068
  81. Constraints on the Maximum Densities of Neutron Stars from Postmerger Gravitational Waves with Third-Generation Observations. Phys. Rev. Lett. 128, 161102. 10.1103/PhysRevLett.128.161102
  82. The Propagation of Relativistic Jets in External Media. ApJ 740, 100. 10.1088/0004-637X/740/2/100
  83. Late-time radio observations of the short GRB 200522A: constraints on the magnetar model. MNRAS 505, L41–L45. 10.1093/mnrasl/slab046
  84. Short gamma-ray bursts with extended emission from magnetar birth: jet formation and collimation. MNRAS 419, 1537–1545. 10.1111/j.1365-2966.2011.19810.x
  85. Stochastic gravitational-wave background from cosmological supernovae. PRD 72, 084001. 10.1103/PhysRevD.72.084001
  86. Burns, E. (2020). Neutron star mergers and how to study them. Living Reviews in Relativity 23, 4. 10.1007/s41114-020-00028-7
  87. Numerical relativity simulations of the neutron star merger GW190425: microphysics and mass ratio effects. MNRAS 516, 4760–4781. 10.1093/mnras/stac2333
  88. Toward Early-warning Detection of Gravitational Waves from Compact Binary Coalescence. ApJ 748, 136. 10.1088/0004-637X/748/2/136
  89. Stringent constraints on neutron-star radii from multimessenger observations and nuclear theory. Nature Astronomy 4, 625–632. 10.1038/s41550-020-1014-6
  90. Cosmological backgrounds of gravitational waves. Classical and Quantum Gravity 35, 163001. 10.1088/1361-6382/aac608
  91. Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions. J. Cosmology Astropart. Phys 2016, 001. 10.1088/1475-7516/2016/04/001
  92. Binary neutron star mergers and third generation detectors: Localization and early warning. Phys. Rev. D 97, 123014. 10.1103/PhysRevD.97.123014
  93. High-energy neutrinos from choked-jet supernovae: searches and implications. arXiv e-prints , arXiv:2210.0308810.48550/arXiv.2210.03088
  94. Catalogue of isolated emission episodes in gamma-ray bursts from Fermi, Swift and BATSE. MNRAS 448, 2624–2633. 10.1093/mnras/stu2667
  95. Kilonova Detectability with Wide-field Instruments. ApJ 927, 163. 10.3847/1538-4357/ac3d25
  96. Premerger Sky Localization of Gravitational Waves from Binary Neutron Star Mergers Using Deep Learning. ApJ 959, 76. 10.3847/1538-4357/accffb
  97. Inferring the post-merger gravitational wave emission from binary neutron star coalescences. Phys. Rev. D 96, 124035. 10.1103/PhysRevD.96.124035
  98. A two per cent Hubble constant measurement from standard sirens within five years. Nature 562, 545–547. 10.1038/s41586-018-0606-0
  99. Cosmography with next-generation gravitational wave detectors. arXiv e-prints , arXiv:2402.0312010.48550/arXiv.2402.03120
  100. Mitigating the counterpart selection effect for standard sirens. arXiv e-prints , arXiv:2307.1040210.48550/arXiv.2307.10402
  101. The Relative Contribution to Heavy Metals Production from Binary Neutron Star Mergers and Neutron Star-Black Hole Mergers. ApJ 920, L3. 10.3847/2041-8213/ac26c6
  102. Event Rate of Fast Radio Bursts from Binary Neutron Star Mergers. ApJ 953, 108. 10.3847/1538-4357/ace358
  103. Kilohertz quasiperiodic oscillations in short gamma-ray bursts. Nature 613, 253–256. 10.1038/s41586-022-05497-0
  104. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. IV. Detection of Near-infrared Signatures of r-process Nucleosynthesis with Gemini-South. ApJ 848, L19. 10.3847/2041-8213/aa905c
  105. Multi-Messenger Astronomy with Extremely Large Telescopes. BAAS 51, 237. 10.48550/arXiv.1903.04629
  106. Chruślińska, M. (2022). Chemical evolution of the Universe and its consequences for gravitational-wave astrophysics. arXiv e-prints , arXiv:2206.1062210.48550/arXiv.2206.10622
  107. Mapping the cosmic expansion history from LIGO-Virgo-KAGRA in synergy with DESI and SPHEREx. MNRAS 511, 2782–2795. 10.1093/mnras/stac208
  108. Twisted-torus configurations with large toroidal magnetic fields in relativistic stars. MNRAS 435, L43–L47. 10.1093/mnrasl/slt092
  109. Prospects for high frequency burst searches following binary neutron star coalescence with advanced gravitational wave detectors. Phys. Rev. D 90, 062004. 10.1103/PhysRevD.90.062004
  110. Observing gravitational waves from the post-merger phase of binary neutron star coalescence. Classical and Quantum Gravity 33, 085003. 10.1088/0264-9381/33/8/085003
  111. Multi-messenger prospects for black hole - neutron star mergers in the O4 and O5 runs. arXiv e-prints , arXiv:2310.1689410.48550/arXiv.2310.16894
  112. Fermi GBM Observations of LIGO Gravitational-wave Event GW150914. ApJ 826, L6. 10.3847/2041-8205/826/1/L6
  113. Pulsar revival in neutron star mergers: multimessenger prospects for the discovery of pre-merger coherent radio emission. MNRAS 519, 3923–3946. 10.1093/mnras/stac3580
  114. An Upper Limit on the Linear Polarization Fraction of the GW170817 Radio Continuum. ApJ 861, L10. 10.3847/2041-8213/aacdfd
  115. Astro2020 Science White Paper: Radio Counterparts of Compact Object Mergers in the Era of Gravitational-Wave Astronomy. arXiv e-prints , arXiv:1903.1058910.48550/arXiv.1903.10589
  116. Gamma-ray Burst Afterglow Plateaus and Gravitational Waves: Multi-messenger Signature of a Millisecond Magnetar? ApJ 702, 1171–1178. 10.1088/0004-637X/702/2/1171
  117. Maximum gravitational-wave energy emissible in magnetar flares. Phys. Rev. D 83, 104014. 10.1103/PhysRevD.83.104014
  118. Formation of black holes in the pair-instability mass gap: Evolution of a post-collision star. MNRAS 516, 1072–1080. 10.1093/mnras/stac2222
  119. The Origin of r-process Elements in the Milky Way. ApJ 855, 99. 10.3847/1538-4357/aaad67
  120. Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358, 1556–1558. 10.1126/science.aap9811
  121. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models. ApJ 848, L17. 10.3847/2041-8213/aa8fc7
  122. Cross-correlation method for intermediate-duration gravitational wave searches associated with gamma-ray bursts. Phys. Rev. D 93, 104059. 10.1103/PhysRevD.93.104059
  123. Dark Energy after GW170817 and GRB170817A. Phys. Rev. Lett. 119, 251302. 10.1103/PhysRevLett.119.251302
  124. Cutler, C. (2002). Gravitational waves from neutron stars with large toroidal B fields. Phys. Rev. D 66, 084025. 10.1103/PhysRevD.66.084025
  125. Cutler, C. (2002). Gravitational waves from neutron stars with large toroidal b𝑏bitalic_b fields. Phys. Rev. D 66, 084025. 10.1103/PhysRevD.66.084025
  126. Energetic constraints on electromagnetic signals from double black hole mergers. MNRAS 470, L92–L96. 10.1093/mnrasl/slx086
  127. Short GRB and binary black hole standard sirens as a probe of dark energy. Phys. Rev. D 74, 063006. 10.1103/PhysRevD.74.063006
  128. The clustering of dark siren host galaxies. arXiv e-prints , arXiv:2310.0899110.48550/arXiv.2310.08991
  129. Gravitational Waves from Massive Magnetars Formed in Binary Neutron Star Mergers. ApJ 798, 25. 10.1088/0004-637X/798/1/25
  130. Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817. Phys. Rev. Lett. 121, 091102. 10.1103/PhysRevLett.121.091102
  131. Estimating Astrophysical Population Properties using a multi-component Stochastic Gravitational-Wave Background Search. arXiv e-prints , arXiv:2310.0582310.48550/arXiv.2310.05823
  132. Probing ensemble properties of vortex-avalanche pulsar glitches with a stochastic gravitational-wave background search. PRD 107, 102001. 10.1103/PhysRevD.107.102001
  133. Stochastic gravitational-wave background searches and constraints on neutron-star ellipticity. MNRAS 513, 1105–1114. 10.1093/mnras/stac984
  134. Accretion, emission, mass and spin evolution. arXiv e-prints , arXiv:2312.1409710.48550/arXiv.2312.14097
  135. GW190521 Mass Gap Event and the Primordial Black Hole Scenario. Phys. Rev. Lett. 126, 051101. 10.1103/PhysRevLett.126.051101
  136. Iteratively comparing gravitational-wave observations to the evolution of massive stellar binaries. Phys. Rev. D 108, 043023. 10.1103/PhysRevD.108.043023
  137. An enigmatic long-lasting γ𝛾\gammaitalic_γ-ray burst not accompanied by a bright supernova. Nature 444, 1050–1052. 10.1038/nature05374
  138. Detweiler, S. (1979). Pulsar timing measurements and the search for gravitational waves. ApJ 234, 1100–1104. 10.1086/157593
  139. Short gamma-ray bursts within 200 Mpc. MNRAS 492, 5011–5022. 10.1093/mnras/staa124
  140. A Luminous Precursor in the Extremely Bright GRB 230307A. ApJ 954, L29. 10.3847/2041-8213/acf21d
  141. Evidence for Two Distinct Populations of Kilonova-associated Gamma-Ray Bursts. ApJ 949, L22. 10.3847/2041-8213/acd4c4
  142. Double Compact Objects. II. Cosmological Merger Rates. ApJ 779, 72. 10.1088/0004-637X/779/1/72
  143. Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis. Science 358, 1570–1574. 10.1126/science.aaq0049
  144. A Search for Kilonova Radio Flares in a Sample of Swift/BAT Short Gamma-Ray Bursts. ApJ 948, 125. 10.3847/1538-4357/acc6c5
  145. Nucleosynthesis, neutrino bursts and γ𝛾\gammaitalic_γ-rays from coalescing neutron stars. Nature 340, 126–128. 10.1038/340126a0
  146. The second data release from the European Pulsar Timing Array. III. Search for gravitational wave signals. A&A 678, A50. 10.1051/0004-6361/202346844
  147. Cosmic Explorer: A Submission to the NSF MPSAC ngGW Subcommittee. arXiv e-prints , arXiv:2306.1374510.48550/arXiv.2306.13745
  148. Swift and NuSTAR observations of GW170817: Detection of a blue kilonova. Science 358, 1565–1570. 10.1126/science.aap9580
  149. Dark Energy After GW170817: Dead Ends and the Road Ahead. Phys. Rev. Lett. 119, 251304. 10.1103/PhysRevLett.119.251304
  150. Things That Might Go Bump in the Night: Assessing Structure in the Binary Black Hole Mass Spectrum. ApJ 955, 107. 10.3847/1538-4357/aced02
  151. Constraints from Gravitational-wave Detections of Binary Black Hole Mergers on the 1212{}^{12}start_FLOATSUPERSCRIPT 12 end_FLOATSUPERSCRIPTC(α𝛼\alphaitalic_α, γ𝛾\gammaitalic_γ)1616{}^{16}start_FLOATSUPERSCRIPT 16 end_FLOATSUPERSCRIPTO Rate. ApJ 902, L36. 10.3847/2041-8213/abbadd
  152. Mind the Gap: The Location of the Lower Edge of the Pair-instability Supernova Black Hole Mass Gap. ApJ 887, 53. 10.3847/1538-4357/ab518b
  153. Gravitational wave background from a cosmological population of core-collapse supernovae. MNRAS 303, 247–257. 10.1046/j.1365-8711.1999.02194.x
  154. Are LIGO’s Black Holes Made from Smaller Black Holes? ApJ 840, L24. 10.3847/2041-8213/aa7045
  155. Apples and Oranges: Comparing Black Holes in X-Ray Binaries and Gravitational-wave Sources. ApJ 929, L26. 10.3847/2041-8213/ac64a5
  156. Constraining neutron-star tidal Love numbers with gravitational-wave detectors. Phys. Rev. D 77, 021502. 10.1103/PhysRevD.77.021502
  157. A Joint Fermi-GBM and Swift-BAT Analysis of Gravitational-Wave Candidates from the Third Gravitational-wave Observing Run. arXiv e-prints , arXiv:2308.1366610.48550/arXiv.2308.13666
  158. The Locations of Short Gamma-Ray Bursts as Evidence for Compact Object Binary Progenitors. ApJ 776, 18. 10.1088/0004-637X/776/1/18
  159. A Decade of Short-duration Gamma-Ray Burst Broadband Afterglows: Energetics, Circumburst Densities, and Jet Opening Angles. ApJ 815, 102. 10.1088/0004-637X/815/2/102
  160. Short GRB Host Galaxies. I. Photometric and Spectroscopic Catalogs, Host Associations, and Galactocentric Offsets. ApJ 940, 56. 10.3847/1538-4357/ac91d0
  161. Neutrino Processes and Pair Formation in Massive Stars and Supernovae. ApJS 9, 201. 10.1086/190103
  162. Freedman, W. L. (2021). Measurements of the Hubble Constant: Tensions in Perspective. ApJ 919, 16. 10.3847/1538-4357/ac0e95
  163. Progress in direct measurements of the Hubble constant. J. Cosmology Astropart. Phys 2023, 050. 10.1088/1475-7516/2023/11/050
  164. eport of the LSC Post-O5 Study Group. https://dcc.ligo.org/LIGO-T2200287/public
  165. [Dataset] Fryer, C. (2023). Gw compact remnant mass distribu5ons as probes of the supernova engine. https://dcc.cosmicexplorer.org/public/0163/P2300002/001/GWCompactRemnanFryer%20-%20Christopher%20Fryer.pdf
  166. No supernovae associated with two long-duration γ𝛾\gammaitalic_γ-ray bursts. Nature 444, 1047–1049. 10.1038/nature05375
  167. Dynamics of a relativistic jet through magnetized media. MNRAS 519, 4454–4460. 10.1093/mnras/stad023
  168. The Swift Gamma-Ray Burst Mission. ApJ 611, 1005–1020. 10.1086/422091
  169. Are merging black holes born from stellar collapse or previous mergers? Phys. Rev. D 95, 124046. 10.1103/PhysRevD.95.124046
  170. Hierarchical mergers of stellar-mass black holes and their gravitational-wave signatures. Nature Astronomy 5, 749–760. 10.1038/s41550-021-01398-w
  171. Compact radio emission indicates a structured jet was produced by a binary neutron star merger. Science 363, 968–971. 10.1126/science.aau8815
  172. Polarization light curves and position angle variation of beamed gamma-ray bursts. MNRAS 309, L7–L11. 10.1046/j.1365-8711.1999.03025.x
  173. Search for merger ejecta emission from late-time radio observations of short GRBs using GMRT. MNRAS 527, 8068–8077. 10.1093/mnras/stad3614
  174. Bayesian framework to infer the Hubble constant from cross-correlation of individual gravitational wave events with galaxies. arXiv e-prints , arXiv:2312.1630510.48550/arXiv.2312.16305
  175. Formation of Stable Magnetars from Binary Neutron Star Mergers. ApJ 771, L26. 10.1088/2041-8205/771/2/L26
  176. Compact Binary Progenitors of Short Gamma-Ray Bursts. ApJ 762, L18. 10.1088/2041-8205/762/2/L18
  177. Afterglow imaging and polarization of misaligned structured GRB jets and cocoons: breaking the degeneracy in GRB 170817A. MNRAS 478, 4128–4141. 10.1093/mnras/sty1214
  178. Constraining the magnetic field structure in collisionless relativistic shocks with a radio afterglow polarization upper limit in GW 170817. MNRAS 491, 5815–5825. 10.1093/mnras/stz3340
  179. Modelling neutron star mountains. MNRAS 500, 5570–5582. 10.1093/mnras/staa3635
  180. Gravitational Waves from Single Neutron Stars: An Advanced Detector Era Survey. In Astrophysics and Space Science Library, eds. L. Rezzolla, P. Pizzochero, D. I. Jones, N. Rea, and I. Vidaña. vol. 457 of Astrophysics and Space Science Library, 673. 10.1007/978-3-319-97616-7_12
  181. Io, a jovian unipolar inductor. ApJ 156, 59–78. 10.1086/149947
  182. A multimessenger model for neutron star-black hole mergers. MNRAS 526, 4585–4598. 10.1093/mnras/stad2990
  183. The case for a minute-long merger-driven gamma-ray burst from fast-cooling synchrotron emission. Nature Astronomy 7, 67–79. 10.1038/s41550-022-01819-4
  184. Optimizing xg detector networks for galactic astrophysics. https://dcc.cosmicexplorer.org/public/0163/P2300017/001/CE_Science_Letter_Gossan_Hall%20-%20Sarah%20Gossan.pdf
  185. Jetted and Turbulent Stellar Deaths: New LVK-detectable Gravitational-wave Sources. ApJ 951, L30. 10.3847/2041-8213/ace03a
  186. The propagation of relativistic jets in expanding media. MNRAS 517, 1640–1666. 10.1093/mnras/stac2699
  187. The structure of hydrodynamic γ𝛾\gammaitalic_γ-ray burst jets. MNRAS 500, 3511–3526. 10.1093/mnras/staa3501
  188. A cocoon shock breakout as the origin of the γ𝛾\gammaitalic_γ-ray emission in GW170817. MNRAS 479, 588–600. 10.1093/mnras/sty1462
  189. Analytic model for off-axis GRB afterglow images - geometry measurement and implications for measuring H00{}_{0}start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT. MNRAS 524, 403–425. 10.1093/mnras/stad1628
  190. Piecewise frequency model for searches for long-transient gravitational waves from young neutron stars. Phys. Rev. D 108, 123045. 10.1103/PhysRevD.108.123045
  191. A Light in the Dark: Searching for Electromagnetic Counterparts to Black Hole-Black Hole Mergers in LIGO/Virgo O3 with the Zwicky Transient Facility. ApJ 942, 99. 10.3847/1538-4357/aca480
  192. Search for Radio Remnants of Nearby Off-axis Gamma-Ray Bursts in a Sample of Swift/BAT Events. ApJ 908, 63. 10.3847/1538-4357/abd315
  193. Off-axis afterglow light curves and images from 2D hydrodynamic simulations of double-sided GRB jets in a stratified external medium. MNRAS 481, 2711–2720. 10.1093/mnras/sty2454
  194. Off-axis emission of short GRB jets from double neutron star mergers and GRB 170817A. MNRAS 481, 1597–1608. 10.1093/mnras/sty2308
  195. Lessons from the Short GRB 170817A: The First Gravitational-wave Detection of a Binary Neutron Star Merger. ApJ 850, L24. 10.3847/2041-8213/aa991d
  196. Transients stemming from collapsing massive stars: The missing pieces to advance joint observations of photons and high-energy neutrinos. Phys. Rev. D 108, 083035. 10.1103/PhysRevD.108.083035
  197. Characterizing Gravitational Wave Detector Networks: From A♯♯{}^{\sharp}start_FLOATSUPERSCRIPT ♯ end_FLOATSUPERSCRIPT to Cosmic Explorer. arXiv e-prints , arXiv:2307.1042110.48550/arXiv.2307.10421
  198. Neutron star-black hole mergers in next generation gravitational-wave observatories. Phys. Rev. D 107, 124007. 10.1103/PhysRevD.107.124007
  199. A Deep Chandra X-Ray Study of Neutron Star Coalescence GW170817. ApJ 848, L25. 10.3847/2041-8213/aa8ede
  200. Evidence for X-Ray Emission in Excess to the Jet-afterglow Decay 3.5 yr after the Binary Neutron Star Merger GW 170817: A New Emission Component. ApJ 927, L17. 10.3847/2041-8213/ac504a
  201. A radio counterpart to a neutron star merger. Science 358, 1579–1583. 10.1126/science.aap9855
  202. Radio and X-ray signatures of merging neutron stars. MNRAS 322, 695–701. 10.1046/j.1365-8711.2001.04103.x
  203. On the population III binary black hole mergers beyond the pair-instability mass gap. MNRAS 505, L69–L73. 10.1093/mnrasl/slab052
  204. The Distance to NGC 4993: The Host Galaxy of the Gravitational-wave Event GW170817. ApJ 848, L31. 10.3847/2041-8213/aa9110
  205. Using Gravitational-Wave Standard Sirens. ApJ 629, 15–22. 10.1086/431341
  206. Testing the Magnetar Model via a Late-time Radio Observations of Two Macronova Candidates. ApJ 819, L22. 10.3847/2041-8205/819/2/L22
  207. Remnant massive neutron stars of binary neutron star mergers: Evolution process and gravitational waveform. Phys. Rev. D 88, 044026. 10.1103/PhysRevD.88.044026
  208. Synchrotron Radiation from the Fast Tail of Dynamical Ejecta of Neutron Star Mergers. ApJ 867, 95. 10.3847/1538-4357/aadf92
  209. A Hubble constant measurement from superluminal motion of the jet in GW170817. Nature Astronomy 3, 940–944. 10.1038/s41550-019-0820-1
  210. Radio Counterparts of Compact Binary Mergers Detectable in Gravitational Waves: A Simulation for an Optimized Survey. ApJ 831, 190. 10.3847/0004-637X/831/2/190
  211. Rapid Premerger Localization of Binary Neutron Stars in Third-generation Gravitational-wave Detectors. ApJ 958, L43. 10.3847/2041-8213/ad0ed4
  212. Hu, W. (2005). Dark Energy Probes in Light of the CMB. In Observing Dark Energy, eds. S. C. Wolff and T. R. Lauer. vol. 339 of Astronomical Society of the Pacific Conference Series, 215. 10.48550/arXiv.astro-ph/0407158
  213. Distance and Properties of NGC 4993 as the Host Galaxy of the Gravitational-wave Source GW170817. ApJ 849, L16. 10.3847/2041-8213/aa9367
  214. LSST: From Science Drivers to Reference Design and Anticipated Data Products. ApJ 873, 111. 10.3847/1538-4357/ab042c
  215. Ligo-india, proposal of the consortium for indian initiative in gravitational-wave observations (indigo). https://dcc.ligo.org/LIGO-M1100296/public
  216. Janka, H.-T. (2017). Neutrino Emission from Supernovae. In Handbook of Supernovae, eds. A. W. Alsabti and P. Murdin. 1575. 10.1007/978-3-319-21846-5_4
  217. [Dataset] Jin, S. (2023). Optimizing xg detector networks for galactic astrophysics. https://dcc.cosmicexplorer.org/public/0163/P2300005/001/CE_Science_Letter%20-%20ssj%20qwe.pdf
  218. The Yet-unobserved Multi-Messenger Gravitational-Wave Universe. BAAS 51, 239. 10.48550/arXiv.1903.09224
  219. The Hubble Tension and Early Dark Energy. Annual Review of Nuclear and Particle Science 73, 153–180. 10.1146/annurev-nucl-111422-024107
  220. Binary black holes population and cosmology in new lights: signature of PISN mass and formation channel in GWTC-3. MNRAS 523, 4539–4555. 10.1093/mnras/stad1373
  221. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 551, 80–84. 10.1038/nature24453
  222. Illuminating gravitational waves: A concordant picture of photons from a neutron star merger. Science 358, 1559–1565. 10.1126/science.aap9455
  223. Observable features of GW170817 kilonova afterglow. MNRAS 487, 3914–3921. 10.1093/mnras/stz1564
  224. The Japanese space gravitational wave antenna: DECIGO. Classical and Quantum Gravity 28, 094011. 10.1088/0264-9381/28/9/094011
  225. Analysis of Sub-threshold Short Gamma-Ray Bursts in Fermi GBM Data. ApJ 862, 152. 10.3847/1538-4357/aacb7b
  226. Search for postmerger gravitational waves from binary neutron star mergers using a matched-filtering statistic. Classical and Quantum Gravity 40, 215008. 10.1088/1361-6382/acfa5d
  227. Progenitors of gravitational wave mergers: binary evolution with the stellar grid-based code COMBINE. MNRAS 481, 1908–1949. 10.1093/mnras/sty2190
  228. Lai, D. (2012). DC Circuit Powered by Orbital Motion: Magnetic Interactions in Compact Object Binaries and Exoplanetary Systems. ApJ 757, L3. 10.1088/2041-8205/757/1/L3
  229. Gravitational Radiation from Rapidly Rotating Nascent Neutron Stars. ApJ 442, 259. 10.1086/175438
  230. [Dataset] Landry, P. (2023). Next-generation dense matter science with binary neutron star inspirals. https://dcc.cosmicexplorer.org/public/0163/P2300013/001/XG_Science_Letter-CBC_Dense_Matter%20-%20Philippe%20Landry.pdf
  231. The Mass Distribution of Neutron Stars in Gravitational-wave Binaries. ApJ 921, L25. 10.3847/2041-8213/ac2f3e
  232. ngVLA Key Science Goal 5 Understanding the Formation and Evolution of Black Holes in the Era of Multi-Messenger Astronomy. In American Astronomical Society Meeting Abstracts #233. vol. 233 of American Astronomical Society Meeting Abstracts, 361.25
  233. Lazzati, D. (2005). Precursor activity in bright, long BATSE gamma-ray bursts. MNRAS 357, 722–731. 10.1111/j.1365-2966.2005.08687.x
  234. Lazzati, D. (2020). Short Duration Gamma-Ray Bursts and Their Outflows in Light of GW170817. Frontiers in Astronomy and Space Sciences 7, 78. 10.3389/fspas.2020.578849
  235. Off-axis emission of short γ𝛾\gammaitalic_γ-ray bursts and the detectability of electromagnetic counterparts of gravitational-wave-detected binary mergers. MNRAS 471, 1652–1661. 10.1093/mnras/stx1683
  236. Jet-Cocoon Outflows from Neutron Star Mergers: Structure, Light Curves, and Fundamental Physics. ApJ 881, 89. 10.3847/1538-4357/ab2e06
  237. Two Steps Forward and One Step Sideways: The Propagation of Relativistic Jets in Realistic Binary Neutron Star Merger Ejecta. ApJ 918, L6. 10.3847/2041-8213/ac1794
  238. Late Time Afterglow Observations Reveal a Collimated Relativistic Jet in the Ejecta of the Binary Neutron Star Merger GW170817. Phys. Rev. Lett. 120, 241103. 10.1103/PhysRevLett.120.241103
  239. The Environment of the Binary Neutron Star Merger GW170817. ApJ 848, L28. 10.3847/2041-8213/aa905f
  240. Advanced LIGO. Classical and Quantum Gravity 32, 074001. 10.1088/0264-9381/32/7/074001
  241. Gravitational Radiation Instability in Hot Young Neutron Stars. Phys. Rev. Lett. 80, 4843–4846. 10.1103/PhysRevLett.80.4843
  242. The Missing Link between Black Holes in High-mass X-Ray Binaries and Gravitational-wave Sources: Observational Selection Effects. ApJ 946, 4. 10.3847/1538-4357/acb8b2
  243. Loeb, A. (2016). Electromagnetic Counterparts to Black Hole Mergers Detected by LIGO. ApJ 819, L21. 10.3847/2041-8205/819/2/L21
  244. A Bright Millisecond Radio Burst of Extragalactic Origin. Science 318, 777. 10.1126/science.1147532
  245. First Demonstration of Early Warning Gravitational-wave Alerts. ApJ 910, L21. 10.3847/2041-8213/abed54
  246. Sub-threshold Binary Neutron Star Search in Advanced LIGO’s First Observing Run. ApJ 878, L17. 10.3847/2041-8213/ab20cf
  247. The Panchromatic Afterglow of GW170817: The Full Uniform Data Set, Modeling, Comparison with Previous Results, and Implications. ApJ 922, 154. 10.3847/1538-4357/ac1ffc
  248. Gravitational-wave cosmology with dark sirens: state of the art and perspectives for 3G detectors. In 41st International Conference on High Energy Physics. 127. 10.48550/arXiv.2211.15512
  249. Rates of compact object coalescences. Living Reviews in Relativity 25, 1. 10.1007/s41114-021-00034-3
  250. Merger Rate of Stellar Black Hole Binaries above the Pair-instability Mass Gap. ApJ 883, L27. 10.3847/2041-8213/ab3f33
  251. Angular-momentum Transport in Proto-neutron Stars and the Fate of Neutron Star Merger Remnants. ApJ 939, 51. 10.3847/1538-4357/ac8b01
  252. Constraining the Maximum Mass of Neutron Stars from Multi-messenger Observations of GW170817. ApJ 850, L19. 10.3847/2041-8213/aa991c
  253. The Multi-messenger Matrix: The Future of Neutron Star Merger Constraints on the Nuclear Equation of State. ApJ 880, L15. 10.3847/2041-8213/ab2ae2
  254. The Binary Neutron Star Event LIGO/Virgo GW170817 160 Days after Merger: Synchrotron Emission across the Electromagnetic Spectrum. ApJ 856, L18. 10.3847/2041-8213/aab2ad
  255. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. V. Rising X-Ray Emission from an Off-axis Jet. ApJ 848, L20. 10.3847/2041-8213/aa9057
  256. First Multimessenger Observations of a Neutron Star Merger. ARA&A 59, 155–202. 10.1146/annurev-astro-112420-030742
  257. On short GRBs similar to GRB 170817A detected by Fermi-GBM. MNRAS 492, 4283–4290. 10.1093/mnras/staa050
  258. McEnery, J. (2019). Wide-Field InfraRed Survey Telescope (WFIRST) Mission and new opportunities in time domain and multmessenger astrophysics. In APS April Meeting Abstracts. vol. 2019 of APS Meeting Abstracts, Q09.006
  259. On Poynting-flux-driven bubbles and shocks around merging neutron star binaries. MNRAS 431, 2737–2744. 10.1093/mnras/stt366
  260. Gravitational Radiation from an Accreting Millisecond Pulsar with a Magnetically Confined Mountain. ApJ 623, 1044–1050. 10.1086/428600
  261. Melosh, H. J. (1969). Estimate of the Gravitational Radiation from NP 0532. Nature 224, 781–782. 10.1038/224781a0
  262. Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data. Phys. Rev. D 95, 042001. 10.1103/PhysRevD.95.042001
  263. Metzger, B. D. (2019). Kilonovae. Living Reviews in Relativity 23, 1. 10.1007/s41114-019-0024-0
  264. What is the Most Promising Electromagnetic Counterpart of a Neutron Star Binary Merger? ApJ 746, 48. 10.1088/0004-637X/746/1/48
  265. A Magnetar Origin for the Kilonova Ejecta in GW170817. ApJ 856, 101. 10.3847/1538-4357/aab095
  266. Pair fireball precursors of neutron star mergers. MNRAS 461, 4435–4440. 10.1093/mnras/stw1800
  267. Enabling multi-messenger astronomy with continuous gravitational waves: early warning and sky localization of binary neutron stars in Einstein Telescope. arXiv e-prints , arXiv:2309.1580810.48550/arXiv.2309.15808
  268. Superluminal motion of a relativistic jet in the neutron-star merger GW170817. Nature 561, 355–359. 10.1038/s41586-018-0486-3
  269. A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817. Nature 554, 207–210. 10.1038/nature25452
  270. Scattering of magnetosonic waves in a relativistic and anisotropic magnetized plasma. MNRAS 368, 1110–1122. 10.1111/j.1365-2966.2006.10189.x
  271. Neutron star crust can support a large ellipticity. MNRAS 517, 5610–5616. 10.1093/mnras/stac3058
  272. Electromagnetic Precursors to Gravitational-wave Events: Numerical Simulations of Flaring in Pre-merger Binary Neutron Star Magnetospheres. ApJ 893, L6. 10.3847/2041-8213/ab8196
  273. Electromagnetic precursor flares from the late inspiral of neutron star binaries. MNRAS 515, 2710–2724. 10.1093/mnras/stac1909
  274. Electromagnetic Precursors to Black Hole-Neutron Star Gravitational Wave Events: Flares and Reconnection-powered Fast Radio Transients from the Late Inspiral. ApJ 956, L33. 10.3847/2041-8213/acfdae
  275. Reconnection-Powered Fast Radio Transients from Coalescing Neutron Star Binaries. Phys. Rev. Lett. 130, 245201. 10.1103/PhysRevLett.130.245201
  276. Flares, Jets, and Quasiperiodic Outbursts from Neutron Star Merger Remnants. ApJ 947, L15. 10.3847/2041-8213/acca84
  277. New Constraints on Radii and Tidal Deformabilities of Neutron Stars from GW170817. Phys. Rev. Lett. 120, 261103. 10.1103/PhysRevLett.120.261103
  278. A Magnetar Engine for Short GRBs and Kilonovae. ApJ 901, L37. 10.3847/2041-8213/abb6ef
  279. Cross-correlating dark sirens and galaxies: measurement of H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT from GWTC-3 of LIGO-Virgo-KAGRA. arXiv e-prints , arXiv:2203.0364310.48550/arXiv.2203.03643
  280. Velocity correction for Hubble constant measurements from standard sirens. A&A 646, A65. 10.1051/0004-6361/201936724
  281. Time dependence of the astrophysical stochastic gravitational wave background. MNRAS 491, 4690–4701. 10.1093/mnras/stz3226
  282. Fundamental physics using the temporal gravitational wave background. Phys. Rev. D 104, 063518. 10.1103/PhysRevD.104.063518
  283. Accurate precision cosmology with redshift unknown gravitational wave sources. Phys. Rev. D 103, 043520. 10.1103/PhysRevD.103.043520
  284. Multimessenger tests of gravity with weakly lensed gravitational waves. Phys. Rev. D 101, 103509. 10.1103/PhysRevD.101.103509
  285. Probing the theory of gravity with gravitational lensing of gravitational waves and galaxy surveys. MNRAS 494, 1956–1970. 10.1093/mnras/staa827
  286. Testing the general theory of relativity using gravitational wave propagation from dark standard sirens. MNRAS 502, 1136–1144. 10.1093/mnras/stab001
  287. Synergies between cosmic explorer and the ngvla. https://dcc.cosmicexplorer.org/public/0163/P2300009/002/Murphy-CE_Science_Letter_ngVLA-v2.pdf
  288. Murphy, E. and ngVLA Science Advisory Council (2020). Science with a next generation Very Large Array. In American Astronomical Society Meeting Abstracts #235. vol. 235 of American Astronomical Society Meeting Abstracts, 364.01
  289. Nakar, E. (2020). The electromagnetic counterparts of compact binary mergers. Phys. Rep. 886, 1–84. 10.1016/j.physrep.2020.08.008
  290. Detectable radio flares following gravitational waves from mergers of binary neutron stars. Nature 478, 82–84. 10.1038/nature10365
  291. Implications of the radio and X-ray emission that followed GW170817. MNRAS 478, 407–415. 10.1093/mnras/sty952
  292. Afterglow Constraints on the Viewing Angle of Binary Neutron Star Mergers and Determination of the Hubble Constant. ApJ 909, 114. 10.3847/1538-4357/abd6cd
  293. Pathways to Discovery in Astronomy and Astrophysics for the 2020s (Washington, DC: The National Academies Press). 10.17226/26141
  294. Dynamical ejecta synchrotron emission as a possible contributor to the changing behaviour of GRB170817A afterglow. MNRAS 506, 5908–5915. 10.1093/mnras/stab2004
  295. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta. ApJ 848, L18. 10.3847/2041-8213/aa9029
  296. Dependence of peculiar velocity on the host properties of the gravitational wave sources and its impact on the measurement of Hubble constant. MNRAS 527, 2152–2164. 10.1093/mnras/stad3256
  297. Exploring Short Gamma-ray Bursts as Gravitational-wave Standard Sirens. ApJ 725, 496–514. 10.1088/0004-637X/725/1/496
  298. Pre-merger Localization of Compact-binary Mergers with Third-generation Observatories. ApJ 917, L27. 10.3847/2041-8213/ac1a75
  299. Gravitational-wave Merger Forecasting: Scenarios for the Early Detection and Localization of Compact-binary Mergers with Ground-based Observatories. ApJ 902, L29. 10.3847/2041-8213/abbc10
  300. Studying Postmerger Outflows from Magnetized-neutrino-cooled Accretion Disks. ApJ 944, 220. 10.3847/1538-4357/acafe2
  301. Owen, B. J. (2005). Maximum Elastic Deformations of Compact Stars with Exotic Equations of State. Phys. Rev. Lett. 95, 211101. 10.1103/PhysRevLett.95.211101
  302. Gravitational waves from hot young rapidly rotating neutron stars. PRD 58, 084020. 10.1103/PhysRevD.58.084020
  303. Continuous Gravitational Waves from Galactic Neutron Stars: Demography, Detectability, and Prospects. ApJ 952, 123. 10.3847/1538-4357/acd76f
  304. Electromagnetic and Gravitational Outputs from Binary-Neutron-Star Coalescence. Phys. Rev. Lett. 111, 061105. 10.1103/PhysRevLett.111.061105
  305. Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993. ApJ 849, L34. 10.3847/2041-8213/aa9660
  306. The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source. ApJ 848, L30. 10.3847/2041-8213/aa9116
  307. Repeating fast radio bursts from neutron star binaries: Multiband and multimessenger opportunities. Phys. Rev. D 108, 063014. 10.1103/PhysRevD.108.063014
  308. [Dataset] Particle Physics Project Prioritization Panel (2023). Pathways to innovation and discovery in particle physics. https://science.osti.gov/-/media/hep/hepap/pdf/Reports/P5Report2023_120123-DRAFT-to-HEPAP.pdf
  309. Are fast radio bursts the most likely electromagnetic counterpart of neutron star mergers resulting in prompt collapse? Phys. Rev. D 100, 043001. 10.1103/PhysRevD.100.043001
  310. Jet-environment interplay in magnetized binary neutron star mergers. MNRAS 524, 260–275. 10.1093/mnras/stad1809
  311. Non-Gaussianity from the cross-correlation of the astrophysical Gravitational Wave Background and the Cosmic Microwave Background. JCAP 2023, 014. 10.1088/1475-7516/2023/10/014
  312. Host galaxies and electromagnetic counterparts to binary neutron star mergers across the cosmic time: detectability of GW170817-like events. MNRAS 512, 2654–2668. 10.1093/mnras/stac685
  313. Binary black hole mergers within the LIGO horizon: statistical properties and prospects for detecting electromagnetic counterparts. MNRAS 477, 4228–4240. 10.1093/mnras/sty814
  314. Limits on Electromagnetic Counterparts of Gravitational-wave-detected Binary Black Hole Mergers. ApJ 875, 49. 10.3847/1538-4357/ab107b
  315. Fast radio bursts at the dawn of the 2020s. A&A Rev. 30, 2. 10.1007/s00159-022-00139-w
  316. Data-driven Expectations for Electromagnetic Counterpart Searches Based on LIGO/Virgo Public Alerts. ApJ 924, 54. 10.3847/1538-4357/ac366d
  317. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 551, 67–70. 10.1038/nature24298
  318. Piro, A. L. (2012). Magnetic Interactions in Coalescing Neutron Star Binaries. ApJ 755, 80. 10.1088/0004-637X/755/1/80
  319. The Fate of Neutron Star Binary Mergers. ApJ 844, L19. 10.3847/2041-8213/aa7f2f
  320. The Challenges Ahead for Multimessenger Analyses of Gravitational Waves and Kilonova: A Case Study on GW190425. ApJ 922, 269. 10.3847/1538-4357/ac222d
  321. The Dynamics of Binary Neutron Star Mergers and GW170817. Annual Review of Nuclear and Particle Science 70, 95–119. 10.1146/annurev-nucl-013120-114541
  322. Dynamical mass ejection from binary neutron star mergers. MNRAS 460, 3255–3271. 10.1093/mnras/stw1227
  323. Binary Neutron Star Mergers: Mass Ejection, Electromagnetic Counterparts, and Nucleosynthesis. ApJ 869, 130. 10.3847/1538-4357/aaf054
  324. GW170817: Joint Constraint on the Neutron Star Equation of State from Multimessenger Observations. ApJ 852, L29. 10.3847/2041-8213/aaa402
  325. A kilonova following a long-duration gamma-ray burst at 350 Mpc. Nature 612, 223–227. 10.1038/s41586-022-05390-w
  326. The birth of black holes: neutron star collapse times, gamma-ray bursts and fast radio bursts. MNRAS 441, 2433–2439. 10.1093/mnras/stu720
  327. Regimbau, T. (2011). The astrophysical gravitational wave stochastic background. Research in Astronomy and Astrophysics 11, 369–390. 10.1088/1674-4527/11/4/001
  328. Gravitational wave background from magnetars. A&A 447, 1–7. 10.1051/0004-6361:20053702
  329. Stochastic Gravitational-Wave Backgrounds: Current Detection Efforts and Future Prospects. Galaxies 10, 34. 10.3390/galaxies10010034
  330. Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars. ApJ 852, L25. 10.3847/2041-8213/aaa401
  331. Searching for the radio remnants of short-duration gamma-ray bursts. MNRAS 500, 1708–1720. 10.1093/mnras/staa3241
  332. Riles, K. (2023). Searches for continuous-wave gravitational radiation. Living Reviews in Relativity 26, 3. 10.1007/s41114-023-00044-3
  333. Electromagnetic Transients Powered by Nuclear Decay in the Tidal Tails of Coalescing Compact Binaries. ApJ 736, L21. 10.1088/2041-8205/736/1/L21
  334. Perspectives for multimessenger astronomy with the next generation of gravitational-wave detectors and high-energy satellites. A&A 665, A97. 10.1051/0004-6361/202243705
  335. Rosado, P. A. (2012). Gravitational wave background from rotating neutron stars. PRD 86, 104007. 10.1103/PhysRevD.86.104007
  336. The Peculiar Short-duration GRB 200826A and Its Supernova. ApJ 932, 1. 10.3847/1538-4357/ac60a2
  337. Afterglow light curves, viewing angle and the jet structure of γ𝛾\gammaitalic_γ-ray bursts. MNRAS 332, 945–950. 10.1046/j.1365-8711.2002.05363.x
  338. LOFAR early-time search for coherent radio emission from GRB 180706A. MNRAS 490, 3483–3492. 10.1093/mnras/stz2866
  339. Signatures of magnetar central engines in short GRB light curves. MNRAS 430, 1061–1087. 10.1093/mnras/sts683
  340. GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass. PRD 97, 021501. 10.1103/PhysRevD.97.021501
  341. An Early-warning System for Electromagnetic Follow-up of Gravitational-wave Events. ApJ 905, L25. 10.3847/2041-8213/abc753
  342. Subtracting compact binary foreground sources to reveal primordial gravitational-wave backgrounds. Phys. Rev. D 102, 024051. 10.1103/PhysRevD.102.024051
  343. Measuring the Delay Time Distribution of Binary Neutron Stars. II. Using the Redshift Distribution from Third-generation Gravitational-wave Detectors Network. ApJ 878, L13. 10.3847/2041-8213/ab22be
  344. Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories. Phys. Rev. Lett. 119, 251303. 10.1103/PhysRevLett.119.251303
  345. Synergies of future ground-based gw detectors with space assets for multi messenger astrophysics. https://dcc.cosmicexplorer.org/public/0163/L2300011/001/Letter%20to%20the%20Cosmic%20Explorer%20Project%20-%20Rita%20Sambruna.pdf
  346. Binary black hole mergers from population III stars: uncertainties from star formation and binary star properties. MNRAS 524, 307–324. 10.1093/mnras/stad1860
  347. Sari, R. (1999). Linear Polarization and Proper Motion in the Afterglow of Beamed Gamma-Ray Bursts. ApJ 524, L43–L46. 10.1086/312294
  348. On the diversity of magnetar-driven kilonovae. MNRAS 516, 4949–4962. 10.1093/mnras/stac2609
  349. Physics, Astrophysics and Cosmology with Gravitational Waves. Living Reviews in Relativity 12, 2. 10.12942/lrr-2009-2
  350. INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817. ApJ 848, L15. 10.3847/2041-8213/aa8f94
  351. A Late-time Radio Survey of Short Gamma-ray Bursts at z ¡ 0.5: New Constraints on the Remnants of Neutron-star Mergers. ApJ 902, 82. 10.3847/1538-4357/abb407
  352. Schutz, B. F. (1986). Determining the Hubble constant from gravitational wave observations. Nature 323, 310–311. 10.1038/323310a0
  353. Modelling populations of kilonovae. MNRAS 520, 2829–2842. 10.1093/mnras/stad257
  354. The Structure of Gamma Ray Burst Jets. arXiv e-prints , arXiv:2206.1108810.48550/arXiv.2206.11088
  355. Searching for cosmological gravitational-wave backgrounds with third-generation detectors in the presence of an astrophysical foreground. Phys. Rev. D 102, 063009. 10.1103/PhysRevD.102.063009
  356. Shibata, M. (2005). Constraining Nuclear Equations of State Using Gravitational Waves from Hypermassive Neutron Stars. Phys. Rev. Lett. 94, 201101. 10.1103/PhysRevLett.94.201101
  357. Modeling GW170817 based on numerical relativity and its implications. PRD 96, 123012. 10.1103/PhysRevD.96.123012
  358. Merger and Mass Ejection of Neutron Star Binaries. Annual Review of Nuclear and Particle Science 69, 41–64. 10.1146/annurev-nucl-101918-023625
  359. Merger of binary neutron stars to a black hole: Disk mass, short gamma-ray bursts, and quasinormal mode ringing. Phys. Rev. D 73, 064027. 10.1103/PhysRevD.73.064027
  360. Measuring the Hubble Constant with Dark Neutron Star-Black Hole Mergers. ApJ 955, 149. 10.3847/1538-4357/acf3dc
  361. Constraints from the time lag between gravitational waves and gamma rays: Implications of GW170817 and GRB 170817A. Phys. Rev. D 97, 083013. 10.1103/PhysRevD.97.083013
  362. “Super-kilonovae” from Massive Collapsars as Signatures of Black Hole Birth in the Pair-instability Mass Gap. ApJ 941, 100. 10.3847/1538-4357/ac8d04
  363. Rapid Bayesian position reconstruction for gravitational-wave transients. Phys. Rev. D 93, 024013. 10.1103/PhysRevD.93.024013
  364. A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551, 75–79. 10.1038/nature24303
  365. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera. ApJ 848, L16. 10.3847/2041-8213/aa9059
  366. Multiwaveform cross-correlation search method for intermediate-duration gravitational waves from gamma-ray bursts. Phys. Rev. D 100, 124041. 10.1103/PhysRevD.100.124041
  367. Shock-powered radio precursors of neutron star mergers from accelerating relativistic binary winds. MNRAS 501, 3184–3202. 10.1093/mnras/staa3794
  368. Detection prospects of core-collapse supernovae with supernova-optimized third-generation gravitational-wave detectors. Phys. Rev. D 100, 043026. 10.1103/PhysRevD.100.043026
  369. Searches for Modulated γ𝛾\gammaitalic_γ-Ray Precursors to Compact Binary Mergers in Fermi-GBM Data. ApJ 930, 45. 10.3847/1538-4357/ac5f53
  370. Young magnetars with fracturing crusts as fast radio burst repeaters. MNRAS 488, 5887–5897. 10.1093/mnras/stz2052
  371. Gravitational Waves from a Core-Collapse Supernova: Perspectives with Detectors in the Late 2020s and Early 2030s. Galaxies 10, 70. 10.3390/galaxies10030070
  372. The Emergence of a Lanthanide-rich Kilonova Following the Merger of Two Neutron Stars. ApJ 848, L27. 10.3847/2041-8213/aa90b6
  373. Fermi Gamma-Ray Space Telescope. In Handbook of X-ray and Gamma-ray Astrophysics. 29. 10.1007/978-981-16-4544-0_58-1
  374. A Population of Fast Radio Bursts at Cosmological Distances. Science 341, 53–56. 10.1126/science.1236789
  375. Gamma-Ray Urgent Archiver for Novel Opportunities (GUANO): Swift/BAT Event Data Dumps on Demand to Enable Sensitive Subthreshold GRB Searches. ApJ 900, 35. 10.3847/1538-4357/aba94f
  376. A nearby long gamma-ray burst from a merger of compact objects. Nature 612, 228–231. 10.1038/s41586-022-05327-3
  377. Accurate flux calibration of GW170817: is the X-ray counterpart on the rise? MNRAS 510, 1902–1909. 10.1093/mnras/stab3533
  378. The X-ray counterpart to the gravitational-wave event GW170817. Nature 551, 71–74. 10.1038/nature24290
  379. Precursors of Short Gamma-ray Bursts. ApJ 723, 1711–1717. 10.1088/0004-637X/723/2/1711
  380. Resonant Shattering of Neutron Star Crusts. Phys. Rev. Lett. 108, 011102. 10.1103/PhysRevLett.108.011102
  381. Deformations of accreting neutron star crusts and gravitational wave emission: Crustal quadrupole moments. Monthly Notices of the Royal Astronomical Society 319, 902–932. 10.1046/j.1365-8711.2000.03938.x
  382. The Discovery of the Electromagnetic Counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck. ApJ 848, L24. 10.3847/2041-8213/aa8edf
  383. Polluting the Pair-instability Mass Gap for Binary Black Holes through Super-Eddington Accretion in Isolated Binaries. ApJ 897, 100. 10.3847/1538-4357/ab9809
  384. Fermi-GBM Follow-up of LIGO-Virgo Binary Black Hole Mergers: Detection Prospects. ApJ 882, 53. 10.3847/1538-4357/ab31aa
  385. Vietri, M. (1996). Magnetospheric Interactions of Binary Pulsars as a Model for Gamma-Ray Bursts. ApJ 471, L95. 10.1086/310340
  386. On the formation history of Galactic double neutron stars. MNRAS 481, 4009–4029. 10.1093/mnras/sty2463
  387. The Combined Ultraviolet, Optical, and Near-infrared Light Curves of the Kilonova Associated with the Binary Neutron Star Merger GW170817: Unified Data Set, Analytic Models, and Physical Implications. ApJ 851, L21. 10.3847/2041-8213/aa9c84
  388. Vitale, S. (2016). Multiband Gravitational-Wave Astronomy: Parameter Estimation and Tests of General Relativity with Space- and Ground-Based Detectors. Phys. Rev. Lett. 117, 051102. 10.1103/PhysRevLett.117.051102
  389. Parameter estimation for binary black holes with networks of third-generation gravitational-wave detectors. PRD 95, 064052. 10.1103/PhysRevD.95.064052
  390. Characterization of binary black holes by heterogeneous gravitational-wave networks. PRD 98, 024029. 10.1103/PhysRevD.98.024029
  391. Analytic properties of the electromagnetic field of binary compact stars and electromagnetic precursors to gravitational waves. Progress of Theoretical and Experimental Physics 2020, 103E01. 10.1093/ptep/ptaa126
  392. Constraining the long-lived supramassive neutron stars by magnetar boosted kilonovae. MNRAS 527, 5166–5182. 10.1093/mnras/stad3560
  393. Electromagnetic Precursors of Short Gamma-Ray Bursts as Counterparts of Gravitational Waves. Galaxies 9, 104. 10.3390/galaxies9040104
  394. Stringent Search for Precursor Emission in Short GRBs from Fermi/GBM Data and Physical Implications. ApJ 902, L42. 10.3847/2041-8213/abbfb8
  395. Wette, K. (2023). Searches for continuous gravitational waves from neutron stars: A twenty-year retrospective. Astroparticle Physics 153, 102880. 10.1016/j.astropartphys.2023.102880
  396. No Precise Localization for FRB 150418: Claimed Radio Transient Is AGN Variability. ApJ 821, L22. 10.3847/2041-8205/821/2/L22
  397. Evidence for a Minimum Ellipticity in Millisecond Pulsars. ApJ 863, L40. 10.3847/2041-8213/aad86a
  398. Woosley, S. E. (2017). Pulsational Pair-instability Supernovae. ApJ 836, 244. 10.3847/1538-4357/836/2/244
  399. Search for Quasiperiodic Oscillations in Precursors of Short and Long Gamma-Ray Bursts. ApJ 941, 166. 10.3847/1538-4357/aca018
  400. A long-duration gamma-ray burst with a peculiar origin. Nature 612, 232–235. 10.1038/s41586-022-05403-8
  401. Searching for cross-correlation between stochastic gravitational-wave background and galaxy number counts. MNRAS 500, 1666–1672. 10.1093/mnras/staa3159
  402. Measurement of the cross-correlation angular power spectrum between the stochastic gravitational wave background and galaxy overdensity. PRD 108, 043025. 10.1103/PhysRevD.108.043025
  403. Cosmology with standard sirens at cosmic noon. Phys. Rev. D 104, 043507. 10.1103/PhysRevD.104.043507
  404. A Long-lived Remnant Neutron Star after GW170817 Inferred from Its Associated Kilonova. ApJ 861, 114. 10.3847/1538-4357/aac6e5
  405. Zhang, B. (2014). A Possible Connection between Fast Radio Bursts and Gamma-Ray Bursts. ApJ 780, L21. 10.1088/2041-8205/780/2/L21
  406. Zhang, B. (2019). The delay time of gravitational wave — gamma-ray burst associations. Frontiers of Physics 14, 64402. 10.1007/s11467-019-0913-4
  407. Zhang, B. (2020). Fast Radio Bursts from Interacting Binary Neutron Star Systems. ApJ 890, L24. 10.3847/2041-8213/ab7244
  408. Tidally-induced Magnetar Super Flare at the Eve of Coalescence with Its Compact Companion. ApJ 939, L25. 10.3847/2041-8213/ac9b55
  409. Localization accuracy of compact binary coalescences detected by the third-generation gravitational-wave detectors and implication for cosmology. Phys. Rev. D 97, 064031. 10.1103/PhysRevD.97.064031
  410. Detecting cosmological gravitational wave background after removal of compact binary coalescences in future gravitational wave detectors. PRD 107, 064048. 10.1103/PhysRevD.107.064048
  411. Precursors in Short Gamma-Ray Bursts as a Possible Probe of Progenitors. ApJ 884, 25. 10.3847/1538-4357/ab3e48
  412. Compact Binary Foreground Subtraction in Next-Generation Ground-Based Observatories. arXiv e-prints , arXiv:2209.0122110.48550/arXiv.2209.01221
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube