Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relaxing Trust Assumptions on Quantum Key Distribution Networks (2402.13136v2)

Published 20 Feb 2024 in quant-ph and cs.NI

Abstract: Quantum security over long distances with untrusted relays is largely unfounded and is still an open question for active research. Nevertheless, quantum networks based on trusted relays are being built across the globe. However, standard QKD network architecture implores a complete trust requirement on QKD relays, which is too demanding and limits the use cases for QKD networks. In this work, we explore the possibility to securely relay a secret in a QKD network by relaxing the trust assumptions (if not completely) on the relay. We characterize QKD relays with different trust levels, namely, Full Access Trust (FAT), Partial Access Trust (PAT), and No Access Trust (NAT). As the name suggests, each level defines the degree with which a relay is required to be trusted with the secret provided by the key management system for end-to-end communication. We then review and propose multiple constructions of the QKD key management system based on the different trust levels. Main contribution of the paper is realized by evaluating key management systems with no access trust level. In principle, we review key management with centralized topology and propose a new decentralized key management system. These different topologies provide various advantages based on the QKD network requirements, allowing an operational flexibility in the architecture. We believe this work presents a new perspective to the open problem of providing a confiding and a practical solution for future long range secure communications

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theoretical Computer Science, vol. 560, pp. 7–11, Dec. 2014.
  2. ETSI, “Quantum Key Distribution (QKD); Common criteria protection profile - Pair of prepare and measure quantum key distribution modules,” ETSI GS QKD 016 - V1.1.1, Tech. Rep., Apr. 2023.
  3. ITU-T, “Series Y: Quantum key distribution networks – Key management,” ITU ITU-T Y.3803, Tech. Rep., Dec. 2020.
  4. S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, “Fundamental limits of repeaterless quantum communications,” Nature Communications, vol. 8, no. 1, p. 15043, Apr. 2017.
  5. S.-K. Liao, W.-Q. Cai, J. Handsteiner, B. Liu, J. Yin, L. Zhang, D. Rauch, M. Fink, J.-G. Ren, W.-Y. Liu, Y. Li, Q. Shen, Y. Cao, F.-Z. Li, J.-F. Wang, Y.-M. Huang, L. Deng, T. Xi, L. Ma, T. Hu, L. Li, N.-L. Liu, F. Koidl, P. Wang, Y.-A. Chen, X.-B. Wang, M. Steindorfer, G. Kirchner, C.-Y. Lu, R. Shu, R. Ursin, T. Scheidl, C.-Z. Peng, J.-Y. Wang, A. Zeilinger, and J.-W. Pan, “Satellite-relayed intercontinental quantum network,” Physical Review Letters, vol. 120, no. 3, p. 30501, Jan. 2018.
  6. B. Huttner, I. D. Quantique, R. Alléaume, F. Fröwis, A. Poppe, J. A. Slater, W. Tittel, and A. Wonfor, “Long-Range QKD without trusted nodes is not possible with current technology,” npj Quantum Information volume, vol. 108, no. 8, Sep. 2022.
  7. C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, “Current status of the DARPA quantum network,” in SPIE 5815, Quantum Information and Computation III, Orlando, United States, May 2005.
  8. A. Poppe, M. Peev, and O. Maurhart, “Outline of the SECOQC quantum-key-distribution network in Vienna,” International Journal of Quantum Information, vol. 6, pp. 209–218, Apr. 2008.
  9. H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Physical Review Letter, vol. 108, p. 130503, Mar. 2012.
  10. M. Lucamarini, Z. Yuan, J. F. Dynes, and A. J. Shields, “Overcoming the rate-distance barrier of quantum key distribution without using quantum repeaters,” Nature, vol. 557, pp. 400–403, May 2018.
  11. G.-J. Fan-Yuan, F.-Y. Lu, S. Wang, Z.-Q. Yin, D.-Y. He, W. Chen, Z. Zhou, Z.-H. Wang, J. Teng, G.-C. Guo, and Z.-F. Han, “Robust and adaptable quantum key distribution network without trusted nodes,” Optica, vol. 9, no. 7, p. 812, Jul. 2022.
  12. Y. Cao, Y. Zhao, J. Wang, X. Yu, Z. Ma, and J. Zhang, “SDQaaS: Software defined networking for quantum key distribution as a service,” Optics Express, vol. 27, no. 5, p. 6892, Mar. 2019.
  13. H. Zhou, K. Lv, L. Huang, and X. Ma, “Quantum network: Security assessment and key management,” IEEE/ACM Transactions on Networking, vol. 30, Jun. 2022.
  14. J. Iyengar and M. Thomson, “QUIC: A UDP-based multiplexed and secure transport,” IETF RFC9000, Tech. Rep., May 2021.
  15. T. Dierks and E. Rescorla, “Transport layer security (TLS) protocol,” IETF RFC 5246, Tech. Rep., Aug. 2008.
Citations (6)

Summary

We haven't generated a summary for this paper yet.