Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Embedded minimal surfaces in $\mathbb{S}^3$ and $\mathbb{B}^3$ via equivariant eigenvalue optimization (2402.13121v1)

Published 20 Feb 2024 in math.DG, math.AP, and math.SP

Abstract: In 1970, Lawson solved the topological realization problem for minimal surfaces in the sphere, showing that any closed orientable surface can be minimally embedded in $\mathbb{S}3$. The analogous problem for surfaces with boundary was posed by Fraser and Li in 2014, and it has attracted much attention in recent years, stimulating the development of many new constructions for free boundary minimal surfaces. In this paper, we resolve this problem by showing that any compact orientable surface with boundary can be embedded in $\mathbb{B}3$ as a free boundary minimal surface with area below $2\pi$. Furthermore, we show that the number of minimal surfaces in $\mathbb{S}3$ of prescribed topology and area below $8\pi$, and the number of free boundary minimal surfaces in $\mathbb{B}3$ with prescribed topology and area below $2\pi$, grow at least linearly with the genus. This is achieved via a new method for producing minimal surfaces of prescribed topology in low-dimensional balls and spheres, based on the optimization of Laplace and Steklov eigenvalues in the presence of a discrete symmetry group. As a key ingredient, we develop new techniques for proving the existence of maximizing metrics, which can be used to resolve the existence problem in many symmetric situations and provide at least partial existence results for classical eigenvalue optimization problems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.