Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Laplacians in spinor bundles over translation surfaces: self-adjoint extentions and regularized determinants (2402.12529v2)

Published 19 Feb 2024 in math.DG and math.SP

Abstract: We study the regularized determinants ${\rm det}\, \Delta$ of various self-adjoint extensions of symmetric Laplacians acting in spinor bundles over compact Riemann surfaces with flat singular metrics $|\omega|2$, where $\omega$ is a holomorphic one form on the Riemann surface. We find an explicit expression for ${\rm det}\, \Delta$ for the so-called self-adjoint Szeg\"o extension through the Bergman tau-function on the moduli space of Abelian differentials and the theta-constants (corresponding to the spinor bundle). This expression can be considered as a version of the well-known spin-$1/2$ bosonization formula of Bost-Nelson for the case of flat conformal metrics with conical singularities and a higher genus generalization of the Ray-Singer formula for flat elliptic curves. We establish comparison formulas for the determinants of two different extensions (e. g., the Szeg\"o extension and the Friedrichs one). The paper answers a question raised by D'Hoker and Phong \cite{DH-P} more than thirty years ago. We also reconsider the results from \cite{DH-P} on the regularization of diverging determinant ratio for Mandelstam metrics (for any spin) proposing (and computing) a new regularization of this ratio.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. Michael F. Atiyah. Riemann surfaces and spin structures. Annales scientifiques de l’École Normale Supérieure 4, 4(1) (1971): 47–62. http://www.numdam.org/articles/10.24033/asens.1205/
  2. J. B. Bost and P. Nelson. Spin-(1/2) Bosonization on Compact Surfaces. Phys. Rev. Letters 57(7) (1986): 795–798. DOI: https://doi.org/10.1103/PhysRevLett.57.795
  3. Functional determinants on Mandelstam diagrams. Commun. Math. Phys. 124 (1989): 629–645. DOI: https://doi.org/10.1007/BF01218453
  4. John Fay. Kernel functions, analytic torsion, and moduli spaces. Memoirs of the AMS 464, Providence, Rhode Island (1992), 123 p. ISBN: 082182550X.
  5. Aaron Calderon. Connected components of strata of Abelian differentials over Teichmüller space. Comment. Math. Helv. 95(2) (2020): 361–420. DOI: https://doi.org/10.4171/cmh/491
  6. H.S. Carslaw. The Green’s Function for a Wedge of any Angle, and Other Problems in the Conduction of Heat. Proc. Lond. Math. Soc. 2(8) (1910): 365–374. DOI: https://doi.org/10.1112/plms/s2-8.1.365
  7. J.S. Dowker. Quantum field theory on a cone. J. Phys. A: Math. 10(1) (1977): 115–124. DOI: https://doi.org/10.1088/0305-4470/10/1/023
  8. Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow. Publications Mathématiques de l’IHÉS 120 (2014): 207–333. http://www.numdam.org/articles/10.1007/s10240-013-0060-3/
  9. Krein Formula and S-Matrix for Euclidean Surfaces with Conical Singularities. J. Geom. Anal. 23 (2013), 1498–1529. DOI: https://doi.org/10.1007/s12220-012-9295-3, arXiv pre-print: https://doi.org/10.48550/arXiv.1011.5034
  10. Isospectrality, comparison formulas for determinants of Laplacian and flat metrics with non-trivial holonomy. Proceedings of the American Mathematical Society 145:9 (2017): 3915-–3928. https://www.jstor.org/stable/90013061
  11. Spectral Determinants on Mandelstam Diagrams. Commun. Math. Phys. 343 (2016), 563–-600. DOI: https://doi.org/10.1007/s00220-015-2506-6, arXiv pre-print: https://doi.org/10.48550/arXiv.1312.0167 (appendix of Alexey Kokotov and Dmitry Korotkin)
  12. Alexey Kokotov. Flat conical Laplacian in the square of the canonical bundle and its regularized determinants. Mathematical Research Letters 29:4 (2022), 1141–1163. DOI: https://dx.doi.org/10.4310/MRL.2022.v29.n4.a9, arXiv pre-pront: https://doi.org/10.48550/arXiv.2001.06710
  13. Tau-functions on spaces of Abelian differentials and higher genus generalizations of Ray-Singer formula. J. Differential Geom. 82 (2004), 35–100. DOI: https://doi.org/10.4310/jdg/1242134368, arXiv pre-print: https://arxiv.org/pdf/math/0405042.pdf
  14. Green function and self-adjoint Laplacians on polyhedral surfaces. Canadian Journal of Mathematics 72:5 (2020), 1324–1351. DOI: https://doi.org/10.4153/S0008414X19000336, arXiv pre-print: https://arxiv.org/pdf/1902.03232.pdf
  15. Vladimir Kondrat’ev. Boundary value problems for elliptic equations in domains with conical and angle points. Proceedings of Moscow Mathematical Society 16 (1967), 209–292.
  16. Lyapunov exponents and Hodge theory. (1997) arXiv pre-print: https://doi.org/10.48550/arXiv.hep-th/9701164
  17. Connected components of the moduli spaces of Abelian differentials with prescribed singularities. Invent. math. 153 (2003): 631–678. DOI: https://doi.org/10.1007/s00222-003-0303-x
  18. Curtis T. McMullen. Dynamics of S⁢L2⁢(ℝ)𝑆subscript𝐿2ℝSL_{2}(\mathbb{R})italic_S italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R ) over moduli space in genus two. Annals of Mathematics 165(2) (2007): 397–456. DOI: https://doi.org/http://doi.org/10.4007/annals.2007.165.397
  19. Sergey Nazarov and Boris A. Plamenevsky. Elliptic Problems in Domains with Piecewise Smooth Boundaries. De Gruyter Expositions in Mathematics, 13 (1994), Berlin, New York (1994), 532 p. ISBN-13: 978-3110135220. DOI: https://doi.org/10.1515/9783110848915
  20. Spin structures in string theory. Nuclear Physics B 276(2) (1986): 272–290. DOI: https://doi.org/10.1016/0550-3213(86)90297-X
  21. Hidenori Sonoda. Functional determinants on punctured Riemann surfaces and their application to string theory. Nuclear Physics B 294 (1987): 157–192. DOI: https://doi.org/10.1016/0550-3213(87)90578-5

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: