Laplacians in spinor bundles over translation surfaces: self-adjoint extentions and regularized determinants (2402.12529v2)
Abstract: We study the regularized determinants ${\rm det}\, \Delta$ of various self-adjoint extensions of symmetric Laplacians acting in spinor bundles over compact Riemann surfaces with flat singular metrics $|\omega|2$, where $\omega$ is a holomorphic one form on the Riemann surface. We find an explicit expression for ${\rm det}\, \Delta$ for the so-called self-adjoint Szeg\"o extension through the Bergman tau-function on the moduli space of Abelian differentials and the theta-constants (corresponding to the spinor bundle). This expression can be considered as a version of the well-known spin-$1/2$ bosonization formula of Bost-Nelson for the case of flat conformal metrics with conical singularities and a higher genus generalization of the Ray-Singer formula for flat elliptic curves. We establish comparison formulas for the determinants of two different extensions (e. g., the Szeg\"o extension and the Friedrichs one). The paper answers a question raised by D'Hoker and Phong \cite{DH-P} more than thirty years ago. We also reconsider the results from \cite{DH-P} on the regularization of diverging determinant ratio for Mandelstam metrics (for any spin) proposing (and computing) a new regularization of this ratio.
- Michael F. Atiyah. Riemann surfaces and spin structures. Annales scientifiques de l’École Normale Supérieure 4, 4(1) (1971): 47–62. http://www.numdam.org/articles/10.24033/asens.1205/
 - J. B. Bost and P. Nelson. Spin-(1/2) Bosonization on Compact Surfaces. Phys. Rev. Letters 57(7) (1986): 795–798. DOI: https://doi.org/10.1103/PhysRevLett.57.795
 - Functional determinants on Mandelstam diagrams. Commun. Math. Phys. 124 (1989): 629–645. DOI: https://doi.org/10.1007/BF01218453
 - John Fay. Kernel functions, analytic torsion, and moduli spaces. Memoirs of the AMS 464, Providence, Rhode Island (1992), 123 p. ISBN: 082182550X.
 - Aaron Calderon. Connected components of strata of Abelian differentials over Teichmüller space. Comment. Math. Helv. 95(2) (2020): 361–420. DOI: https://doi.org/10.4171/cmh/491
 - H.S. Carslaw. The Green’s Function for a Wedge of any Angle, and Other Problems in the Conduction of Heat. Proc. Lond. Math. Soc. 2(8) (1910): 365–374. DOI: https://doi.org/10.1112/plms/s2-8.1.365
 - J.S. Dowker. Quantum field theory on a cone. J. Phys. A: Math. 10(1) (1977): 115–124. DOI: https://doi.org/10.1088/0305-4470/10/1/023
 - Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow. Publications Mathématiques de l’IHÉS 120 (2014): 207–333. http://www.numdam.org/articles/10.1007/s10240-013-0060-3/
 - Krein Formula and S-Matrix for Euclidean Surfaces with Conical Singularities. J. Geom. Anal. 23 (2013), 1498–1529. DOI: https://doi.org/10.1007/s12220-012-9295-3, arXiv pre-print: https://doi.org/10.48550/arXiv.1011.5034
 - Isospectrality, comparison formulas for determinants of Laplacian and flat metrics with non-trivial holonomy. Proceedings of the American Mathematical Society 145:9 (2017): 3915-–3928. https://www.jstor.org/stable/90013061
 - Spectral Determinants on Mandelstam Diagrams. Commun. Math. Phys. 343 (2016), 563–-600. DOI: https://doi.org/10.1007/s00220-015-2506-6, arXiv pre-print: https://doi.org/10.48550/arXiv.1312.0167 (appendix of Alexey Kokotov and Dmitry Korotkin)
 - Alexey Kokotov. Flat conical Laplacian in the square of the canonical bundle and its regularized determinants. Mathematical Research Letters 29:4 (2022), 1141–1163. DOI: https://dx.doi.org/10.4310/MRL.2022.v29.n4.a9, arXiv pre-pront: https://doi.org/10.48550/arXiv.2001.06710
 - Tau-functions on spaces of Abelian differentials and higher genus generalizations of Ray-Singer formula. J. Differential Geom. 82 (2004), 35–100. DOI: https://doi.org/10.4310/jdg/1242134368, arXiv pre-print: https://arxiv.org/pdf/math/0405042.pdf
 - Green function and self-adjoint Laplacians on polyhedral surfaces. Canadian Journal of Mathematics 72:5 (2020), 1324–1351. DOI: https://doi.org/10.4153/S0008414X19000336, arXiv pre-print: https://arxiv.org/pdf/1902.03232.pdf
 - Vladimir Kondrat’ev. Boundary value problems for elliptic equations in domains with conical and angle points. Proceedings of Moscow Mathematical Society 16 (1967), 209–292.
 - Lyapunov exponents and Hodge theory. (1997) arXiv pre-print: https://doi.org/10.48550/arXiv.hep-th/9701164
 - Connected components of the moduli spaces of Abelian differentials with prescribed singularities. Invent. math. 153 (2003): 631–678. DOI: https://doi.org/10.1007/s00222-003-0303-x
 - Curtis T. McMullen. Dynamics of SL2(ℝ)𝑆subscript𝐿2ℝSL_{2}(\mathbb{R})italic_S italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R ) over moduli space in genus two. Annals of Mathematics 165(2) (2007): 397–456. DOI: https://doi.org/http://doi.org/10.4007/annals.2007.165.397
 - Sergey Nazarov and Boris A. Plamenevsky. Elliptic Problems in Domains with Piecewise Smooth Boundaries. De Gruyter Expositions in Mathematics, 13 (1994), Berlin, New York (1994), 532 p. ISBN-13: 978-3110135220. DOI: https://doi.org/10.1515/9783110848915
 - Spin structures in string theory. Nuclear Physics B 276(2) (1986): 272–290. DOI: https://doi.org/10.1016/0550-3213(86)90297-X
 - Hidenori Sonoda. Functional determinants on punctured Riemann surfaces and their application to string theory. Nuclear Physics B 294 (1987): 157–192. DOI: https://doi.org/10.1016/0550-3213(87)90578-5
 
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.