Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Exact black holes in string-inspired Euler-Heisenberg theory (2402.12459v2)

Published 19 Feb 2024 in hep-th, gr-qc, and astro-ph.HE

Abstract: We consider higher-order derivative gauge field corrections that arise in the fundamental context of dimensional reduction of String Theory and Lovelock-inspired gravities and obtain an exact and asymptotically flat black-hole solution, in the presence of non-trivial dilaton configurations. Specifically, by considering the gravitational theory of Euler-Heisenberg non-linear electrodynamics coupled to a dilaton field with specific coupling functions, we perform an extensive analysis of the characteristics of the black hole, including its geodesics for massive particles, the energy conditions, thermodynamical and stability analysis. The inclusion of a dilaton scalar potential in the action can also give rise to asymptotically (A)dS spacetimes and an effective cosmological constant. Moreover, we find that the black hole can be thermodynamically favored when compared to the Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) black hole for those parameters of the model that lead to a larger black-hole horizon for the same mass. Finally, it is observed that the energy conditions of the obtained black hole are indeed satisfied, further validating the robustness of the solution within the theoretical framework, but also implying that this self-gravitating dilaton-non-linear-electrodynamics system constitutes another explicit example of bypassing modern versions of the no-hair theorem without any violation of the energy conditions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (131)
  1. D. J. Gross and J. H. Sloan, “The Quartic Effective Action for the Heterotic String,” Nucl. Phys. B 291 (1987) 41–89.
  2. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 11, 2012.
  3. P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E. Winstanley, “Dilatonic black holes in higher curvature string gravity,” Phys. Rev. D 54 (1996) 5049–5058, arXiv:hep-th/9511071.
  4. M. Natsuume, “Higher order correction to the GHS string black hole,” Phys. Rev. D 50 (1994) 3949–3953, arXiv:hep-th/9406079.
  5. Y. Kats, L. Motl, and M. Padi, “Higher-order corrections to mass-charge relation of extremal black holes,” JHEP 12 (2007) 068, arXiv:hep-th/0606100.
  6. D. Anninos and G. Pastras, “Thermodynamics of the Maxwell-Gauss-Bonnet anti-de Sitter Black Hole with Higher Derivative Gauge Corrections,” JHEP 07 (2009) 030, arXiv:0807.3478 [hep-th].
  7. J. T. Liu and P. Szepietowski, “Higher derivative corrections to R-charged AdS(5) black holes and field redefinitions,” Phys. Rev. D 79 (2009) 084042, arXiv:0806.1026 [hep-th].
  8. C. Charmousis, B. Gouteraux, and E. Kiritsis, “Higher-derivative scalar-vector-tensor theories: black holes, Galileons, singularity cloaking and holography,” JHEP 09 (2012) 011, arXiv:1206.1499 [hep-th].
  9. E. Babichev and C. Charmousis, “Dressing a black hole with a time-dependent Galileon,” JHEP 08 (2014) 106, arXiv:1312.3204 [gr-qc].
  10. E. Babichev, C. Charmousis, and A. Lehébel, “Black holes and stars in Horndeski theory,” Class. Quant. Grav. 33 no. 15, (2016) 154002, arXiv:1604.06402 [gr-qc].
  11. E. Babichev, C. Charmousis, and A. Lehébel, “Asymptotically flat black holes in Horndeski theory and beyond,” JCAP 04 (2017) 027, arXiv:1702.01938 [gr-qc].
  12. C. Charmousis, E. J. Copeland, A. Padilla, and P. M. Saffin, “General second order scalar-tensor theory, self tuning, and the Fab Four,” Phys. Rev. Lett. 108 (2012) 051101, arXiv:1106.2000 [hep-th].
  13. C. A. R. Herdeiro and E. Radu, “Asymptotically flat black holes with scalar hair: a review,” Int. J. Mod. Phys. D 24 no. 09, (2015) 1542014, arXiv:1504.08209 [gr-qc].
  14. O. Baake, A. Cisterna, M. Hassaine, and U. Hernandez-Vera, “Endorsing black holes with beyond Horndeski primary hair: An exact solution framework for scalarizing in every dimension,” arXiv:2312.05207 [hep-th].
  15. G. Antoniou, A. Bakopoulos, and P. Kanti, “Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories,” Phys. Rev. Lett. 120 no. 13, (2018) 131102, arXiv:1711.03390 [hep-th].
  16. G. Antoniou, A. Bakopoulos, and P. Kanti, “Black-Hole Solutions with Scalar Hair in Einstein-Scalar-Gauss-Bonnet Theories,” Phys. Rev. D 97 no. 8, (2018) 084037, arXiv:1711.07431 [hep-th].
  17. G. Antoniou, A. Bakopoulos, P. Kanti, B. Kleihaus, and J. Kunz, “Novel Einstein–scalar-Gauss-Bonnet wormholes without exotic matter,” Phys. Rev. D 101 no. 2, (2020) 024033, arXiv:1904.13091 [hep-th].
  18. A. Bakopoulos, G. Antoniou, and P. Kanti, “Novel Black-Hole Solutions in Einstein-Scalar-Gauss-Bonnet Theories with a Cosmological Constant,” Phys. Rev. D 99 no. 6, (2019) 064003, arXiv:1812.06941 [hep-th].
  19. A. Bakopoulos, P. Kanti, and N. Pappas, “Existence of solutions with a horizon in pure scalar-Gauss-Bonnet theories,” Phys. Rev. D 101 no. 4, (2020) 044026, arXiv:1910.14637 [hep-th].
  20. A. Bakopoulos, P. Kanti, and N. Pappas, “Large and ultracompact Gauss-Bonnet black holes with a self-interacting scalar field,” Phys. Rev. D 101 no. 8, (2020) 084059, arXiv:2003.02473 [hep-th].
  21. A. Bakopoulos and T. Nakas, “Analytic and asymptotically flat hairy (ultra-compact) black-hole solutions and their axial perturbations,” JHEP 04 (2022) 096, arXiv:2107.05656 [gr-qc].
  22. A. Bakopoulos, C. Charmousis, and P. Kanti, “Traversable wormholes in beyond Horndeski theories,” JCAP 05 no. 05, (2022) 022, arXiv:2111.09857 [gr-qc].
  23. A. Bakopoulos, C. Charmousis, P. Kanti, and N. Lecoeur, “Compact objects of spherical symmetry in beyond Horndeski theories,” JHEP 08 (2022) 055, arXiv:2203.14595 [gr-qc].
  24. A. Bakopoulos, C. Charmousis, P. Kanti, N. Lecoeur, and T. Nakas, “Black holes with primary scalar hair,” Phys. Rev. D 109 no. 2, (2024) 024032, arXiv:2310.11919 [gr-qc].
  25. A. Bakopoulos and T. Nakas, “Novel exact ultracompact and ultrasparse hairy black holes emanating from regular and phantom scalar fields,” Phys. Rev. D 107 no. 12, (2023) 124035, arXiv:2303.09116 [gr-qc].
  26. A. Bakopoulos, N. Chatzifotis, and T. Nakas, “Compact objects with primary hair in shift and parity symmetric beyond Horndeski gravities,” arXiv:2312.17198 [gr-qc].
  27. A. Bakopoulos, N. Chatzifotis, C. Erices, and E. Papantonopoulos, “Stealth Ellis wormholes in Horndeski theories,” JCAP 11 (2023) 055, arXiv:2306.16768 [hep-th].
  28. T. Nakas, T. D. Pappas, and Z. Stuchlík, “Bridging dimensions: General embedding algorithm and field-theory reconstruction in 5D braneworld models,” Phys. Rev. D 109 no. 4, (2024) L041501, arXiv:2309.00873 [gr-qc].
  29. N. Chatzifotis, E. Papantonopoulos, and C. Vlachos, “Disformal transition of a black hole to a wormhole in scalar-tensor Horndeski theory,” Phys. Rev. D 105 no. 6, (2022) 064025, arXiv:2111.08773 [gr-qc].
  30. N. Chatzifotis, P. Dorlis, N. E. Mavromatos, and E. Papantonopoulos, “Scalarization of Chern-Simons-Kerr black hole solutions and wormholes,” Phys. Rev. D 105 no. 8, (2022) 084051, arXiv:2202.03496 [gr-qc].
  31. N. Chatzifotis, N. E. Mavromatos, and D. P. Theodosopoulos, “Global monopoles in the extended Gauss-Bonnet gravity,” Phys. Rev. D 107 no. 8, (2023) 085014, arXiv:2212.09467 [gr-qc].
  32. T. Karakasis, E. Papantonopoulos, Z.-Y. Tang, and B. Wang, “Black holes of (2+1)-dimensional f⁢(R)𝑓𝑅f(R)italic_f ( italic_R ) gravity coupled to a scalar field,” Phys. Rev. D 103 no. 6, (2021) 064063, arXiv:2101.06410 [gr-qc].
  33. T. Karakasis, E. Papantonopoulos, Z.-Y. Tang, and B. Wang, “Exact black hole solutions with a conformally coupled scalar field and dynamic Ricci curvature in f(R) gravity theories,” Eur. Phys. J. C 81 no. 10, (2021) 897, arXiv:2103.14141 [gr-qc].
  34. T. Karakasis, E. Papantonopoulos, and C. Vlachos, “f(R) gravity wormholes sourced by a phantom scalar field,” Phys. Rev. D 105 no. 2, (2022) 024006, arXiv:2107.09713 [gr-qc].
  35. T. Karakasis, E. Papantonopoulos, Z.-Y. Tang, and B. Wang, “(2+1)-dimensional black holes in f(R,ϕitalic-ϕ\phiitalic_ϕ) gravity,” Phys. Rev. D 105 no. 4, (2022) 044038, arXiv:2201.00035 [gr-qc].
  36. T. Karakasis, N. E. Mavromatos, and E. Papantonopoulos, “Regular compact objects with scalar hair,” Phys. Rev. D 108 no. 2, (2023) 024001, arXiv:2305.00058 [gr-qc].
  37. T. Karakasis, G. Koutsoumbas, and E. Papantonopoulos, “Black holes with scalar hair in three dimensions,” Phys. Rev. D 107 no. 12, (2023) 124047, arXiv:2305.00686 [gr-qc].
  38. Z.-Y. Tang, Y. C. Ong, B. Wang, and E. Papantonopoulos, “General black hole solutions in ( 2+1 )-dimensions with a scalar field nonminimally coupled to gravity,” Phys. Rev. D 100 no. 2, (2019) 024003, arXiv:1901.07310 [gr-qc].
  39. Z.-Y. Tang, B. Wang, T. Karakasis, and E. Papantonopoulos, “Curvature scalarization of black holes in f(R) gravity,” Phys. Rev. D 104 no. 6, (2021) 064017, arXiv:2008.13318 [gr-qc].
  40. H.-S. Liu, H. Lu, Z.-Y. Tang, and B. Wang, “Black hole scalarization in Gauss-Bonnet extended Starobinsky gravity,” Phys. Rev. D 103 no. 8, (2021) 084043, arXiv:2004.14395 [gr-qc].
  41. E. Babichev, C. Charmousis, M. Hassaine, and N. Lecoeur, “Conformally coupled theories and their deformed compact objects: From black holes, radiating spacetimes to eternal wormholes,” Phys. Rev. D 106 no. 6, (2022) 064039, arXiv:2206.11013 [gr-qc].
  42. E. Babichev, C. Charmousis, M. Hassaine, and N. Lecoeur, “Selecting Horndeski theories without apparent symmetries and their black hole solutions,” Phys. Rev. D 108 no. 2, (2023) 024019, arXiv:2303.04126 [gr-qc].
  43. E. Babichev, C. Charmousis, and N. Lecoeur, “Rotating black holes embedded in a cosmological background for scalar-tensor theories,” JCAP 08 (2023) 022, arXiv:2305.17129 [gr-qc].
  44. E. Babichev, C. Charmousis, and N. Lecoeur, “Exact black hole solutions in higher-order scalar-tensor theories,” arXiv:2309.12229 [gr-qc].
  45. E. Babichev, C. Charmousis, M. Hassaine, and N. Lecoeur, “Conformally coupled scalar in Lovelock theory,” Phys. Rev. D 107 no. 8, (2023) 084050, arXiv:2302.02920 [gr-qc].
  46. C. Charmousis, A. Lehébel, E. Smyrniotis, and N. Stergioulas, “Astrophysical constraints on compact objects in 4D Einstein-Gauss-Bonnet gravity,” JCAP 02 no. 02, (2022) 033, arXiv:2109.01149 [gr-qc].
  47. G. Antoniou, A. Lehébel, G. Ventagli, and T. P. Sotiriou, “Black hole scalarization with Gauss-Bonnet and Ricci scalar couplings,” Phys. Rev. D 104 no. 4, (2021) 044002, arXiv:2105.04479 [gr-qc].
  48. N. Andreou, N. Franchini, G. Ventagli, and T. P. Sotiriou, “Spontaneous scalarization in generalised scalar-tensor theory,” Phys. Rev. D 99 no. 12, (2019) 124022, arXiv:1904.06365 [gr-qc]. [Erratum: Phys.Rev.D 101, 109903 (2020)].
  49. G. Ventagli, A. Lehébel, and T. P. Sotiriou, “Onset of spontaneous scalarization in generalized scalar-tensor theories,” Phys. Rev. D 102 no. 2, (2020) 024050, arXiv:2006.01153 [gr-qc].
  50. S. Mahapatra, S. Priyadarshinee, G. N. Reddy, and B. Shukla, “Exact topological charged hairy black holes in AdS Space in D𝐷Ditalic_D-dimensions,” Phys. Rev. D 102 no. 2, (2020) 024042, arXiv:2004.00921 [hep-th].
  51. J. D. Bekenstein, “Nonexistence of baryon number for static black holes,” Phys. Rev. D 5 (1972) 1239–1246.
  52. J. D. Bekenstein, “Transcendence of the law of baryon-number conservation in black hole physics,” Phys. Rev. Lett. 28 (1972) 452–455.
  53. C. Teitelboim, “Nonmeasurability of the lepton number of a black hole,” Lett. Nuovo Cim. 3S2 (1972) 397–400.
  54. J. D. Bekenstein, “Novel “no-scalar-hair” theorem for black holes,” Phys. Rev. D 51 (Jun, 1995) R6608–R6611. https://link.aps.org/doi/10.1103/PhysRevD.51.R6608.
  55. A. E. Mayo and J. D. Bekenstein, “No hair for spherical black holes: Charged and nonminimally coupled scalar field with selfinteraction,” Phys. Rev. D 54 (1996) 5059–5069, arXiv:gr-qc/9602057.
  56. P. O. Mazur, “Black hole uniqueness theorems,” arXiv:hep-th/0101012.
  57. P. T. Chrusciel, J. Lopes Costa, and M. Heusler, “Stationary Black Holes: Uniqueness and Beyond,” Living Rev. Rel. 15 (2012) 7, arXiv:1205.6112 [gr-qc].
  58. S. Priyadarshinee, S. Mahapatra, and I. Banerjee, “Analytic topological hairy dyonic black holes and thermodynamics,” Phys. Rev. D 104 no. 8, (2021) 084023, arXiv:2108.02514 [hep-th].
  59. S. Priyadarshinee and S. Mahapatra, “Analytic three-dimensional primary hair charged black holes and thermodynamics,” Phys. Rev. D 108 no. 4, (2023) 044017, arXiv:2305.09172 [gr-qc].
  60. A. Daripa and S. Mahapatra, “Analytic three-dimensional primary hair charged black holes with Coulomb-like electrodynamics and their thermodynamics,” arXiv:2401.04561 [gr-qc].
  61. D. P. Theodosopoulos, T. Karakasis, G. Koutsoumbas, and E. Papantonopoulos, “Motion of particles around a magnetically charged Euler-Heisenberg black hole with scalar hair and the Event Horizon Telescope,” arXiv:2311.02740 [gr-qc].
  62. T. Karakasis, E. Papantonopoulos, Z.-Y. Tang, and B. Wang, “Rotating (2+1)-dimensional black holes in Einstein-Maxwell-dilaton theory,” Phys. Rev. D 107 no. 2, (2023) 024043, arXiv:2210.15704 [gr-qc].
  63. T. Karakasis, G. Koutsoumbas, A. Machattou, and E. Papantonopoulos, “Magnetically charged Euler-Heisenberg black holes with scalar hair,” Phys. Rev. D 106 no. 10, (2022) 104006, arXiv:2207.13146 [gr-qc].
  64. M. Kord Zangeneh, B. Wang, A. Sheykhi, and Z. Y. Tang, “Charged scalar quasi-normal modes for linearly charged dilaton-Lifshitz solutions,” Phys. Lett. B 771 (2017) 257–263, arXiv:1701.03644 [hep-th].
  65. Z.-Y. Tang, C.-Y. Zhang, M. Kord Zangeneh, B. Wang, and J. Saavedra, “Thermodynamical and dynamical properties of Charged BTZ Black Holes,” Eur. Phys. J. C 77 no. 6, (2017) 390, arXiv:1610.01744 [hep-th].
  66. N. Sanchis-Gual, J. Calderón Bustillo, C. Herdeiro, E. Radu, J. A. Font, S. H. W. Leong, and A. Torres-Forné, “Impact of the wavelike nature of Proca stars on their gravitational-wave emission,” Phys. Rev. D 106 no. 12, (2022) 124011, arXiv:2208.11717 [gr-qc].
  67. C. Herdeiro, E. Radu, and H. Rúnarsson, “Kerr black holes with Proca hair,” Class. Quant. Grav. 33 no. 15, (2016) 154001, arXiv:1603.02687 [gr-qc].
  68. C. A. R. Herdeiro, E. Radu, N. Sanchis-Gual, and J. A. Font, “Spontaneous Scalarization of Charged Black Holes,” Phys. Rev. Lett. 121 no. 10, (2018) 101102, arXiv:1806.05190 [gr-qc].
  69. C. Charmousis, B. Gouteraux, and J. Soda, “Einstein-Maxwell-Dilaton theories with a Liouville potential,” Phys. Rev. D 80 (2009) 024028, arXiv:0905.3337 [gr-qc].
  70. E. Babichev, C. Charmousis, and M. Hassaine, “Black holes and solitons in an extended Proca theory,” JHEP 05 (2017) 114, arXiv:1703.07676 [gr-qc].
  71. E. Babichev, C. Charmousis, and M. Hassaine, “Charged Galileon black holes,” JCAP 05 (2015) 031, arXiv:1503.02545 [gr-qc].
  72. J. Barrientos, A. Cisterna, D. Kubiznak, and J. Oliva, “Accelerated black holes beyond Maxwell’s electrodynamics,” Phys. Lett. B 834 (2022) 137447, arXiv:2205.15777 [gr-qc].
  73. A. Cisterna, M. Hassaine, J. Oliva, and M. Rinaldi, “Static and rotating solutions for Vector-Galileon theories,” Phys. Rev. D 94 no. 10, (2016) 104039, arXiv:1609.03430 [gr-qc].
  74. A. Cisterna, G. Giribet, J. Oliva, and K. Pallikaris, “Quasitopological electromagnetism and black holes,” Phys. Rev. D 101 no. 12, (2020) 124041, arXiv:2004.05474 [hep-th].
  75. A. Cisterna, C. Henríquez-Báez, N. Mora, and L. Sanhueza, “Quasitopological electromagnetism: Reissner-Nordström black strings in Einstein and Lovelock gravities,” Phys. Rev. D 104 no. 6, (2021) 064055, arXiv:2105.04239 [gr-qc].
  76. H. Rehman and G. Abbas, “Accretion around a hairy black hole in the framework of gravitational decoupling theory,” Chin. Phys. C 47 no. 12, (2023) 125106.
  77. H. Rehman, G. Abbas, T. Zhu, and G. Mustafa, “Matter accretion onto the magnetically charged Euler–Heisenberg black hole with scalar hair,” Eur. Phys. J. C 83 no. 9, (2023) 856, arXiv:2307.16155 [gr-qc].
  78. D. Magos, N. Bretón, and A. Macías, “Orbits in static magnetically and dyonically charged Einstein-Euler-Heisenberg black hole spacetimes,” Phys. Rev. D 108 no. 6, (2023) 064014.
  79. M. Dernek, C. Tekincay, G. Gecim, Y. Kucukakca, and Y. Sucu, “Hawking radiation of Euler–Heisenberg-adS black hole under the GUP effect,” Eur. Phys. J. Plus 138 no. 4, (2023) 369.
  80. R. H. Ali and G. Abbas, “Thermodynamics under the impact of thermal fluctuations and quasi-normal modes of Euler-Heisenberg AdS BH in the framework of NLED,” Chin. Phys. C 47 no. 11, (2023) 115106.
  81. S. Kiorpelidi, T. Karakasis, G. Koutsoumbas, and E. Papantonopoulos, “Scalarization of the Reissner-Nordström black hole with higher derivative gauge field corrections,” Phys. Rev. D 109 no. 2, (2024) 024033, arXiv:2311.10858 [gr-qc].
  82. D. P. Sorokin, “Introductory Notes on Non-linear Electrodynamics and its Applications,” Fortsch. Phys. 70 no. 7-8, (2022) 2200092, arXiv:2112.12118 [hep-th].
  83. G. W. Gibbons and K.-i. Maeda, “Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields,” Nucl. Phys. B 298 (1988) 741–775.
  84. D. Garfinkle, G. T. Horowitz, and A. Strominger, “Charged black holes in string theory,” Phys. Rev. D 43 (1991) 3140. [Erratum: Phys.Rev.D 45, 3888 (1992)].
  85. M. Born, “Modified field equations with a finite radius of the electron,” Nature 132 no. 3329, (1933) 282.1.
  86. M. Born, “On the quantum theory of the electromagnetic field,” Proc. Roy. Soc. Lond. A 143 no. 849, (1934) 410–437.
  87. M. Born and L. Infeld, “Foundations of the new field theory,” Proc. Roy. Soc. Lond. A 144 no. 852, (1934) 425–451.
  88. R. R. Metsaev, M. Rakhmanov, and A. A. Tseytlin, “The Born-Infeld Action as the Effective Action in the Open Superstring Theory,” Phys. Lett. B 193 (1987) 207–212.
  89. O. D. Andreev and A. A. Tseytlin, “Partition Function Representation for the Open Superstring Effective Action: Cancellation of Mobius Infinities and Derivative Corrections to Born-Infeld Lagrangian,” Nucl. Phys. B 311 (1988) 205–252.
  90. A. A. Tseytlin, “Born-Infeld action, supersymmetry and string theory,” arXiv:hep-th/9908105.
  91. R. G. Leigh, “Dirac-Born-Infeld Action from Dirichlet Sigma Model,” Mod. Phys. Lett. A 4 (1989) 2767.
  92. J. Dai, R. G. Leigh, and J. Polchinski, “New Connections Between String Theories,” Mod. Phys. Lett. A 4 (1989) 2073–2083.
  93. J. Polchinski, “Tasi lectures on D-branes,” in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 96): Fields, Strings, and Duality, pp. 293–356. 11, 1996. arXiv:hep-th/9611050.
  94. J. Ellis, N. E. Mavromatos, and T. You, “Light-by-Light Scattering Constraint on Born-Infeld Theory,” Phys. Rev. Lett. 118 no. 26, (2017) 261802, arXiv:1703.08450 [hep-ph].
  95. J. Ellis, N. E. Mavromatos, P. Roloff, and T. You, “Light-by-light scattering at future e+⁢e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT colliders,” Eur. Phys. J. C 82 no. 7, (2022) 634, arXiv:2203.17111 [hep-ph].
  96. D. d’Enterria and G. G. da Silveira, “Observing light-by-light scattering at the Large Hadron Collider,” Phys. Rev. Lett. 111 (2013) 080405, arXiv:1305.7142 [hep-ph]. [Erratum: Phys.Rev.Lett. 116, 129901 (2016)].
  97. ATLAS Collaboration, M. Aaboud et al., “Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC,” Nature Phys. 13 no. 9, (2017) 852–858, arXiv:1702.01625 [hep-ex].
  98. CMS Collaboration, A. M. Sirunyan et al., “Evidence for light-by-light scattering and searches for axion-like particles in ultraperipheral PbPb collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\mathrm{NN}}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV,” Phys. Lett. B 797 (2019) 134826, arXiv:1810.04602 [hep-ex].
  99. S. S. Yazadjiev, “Einstein-Born-Infeld-dilaton black holes in non-asymptotically flat spacetimes,” Phys. Rev. D 72 (2005) 044006, arXiv:hep-th/0504152.
  100. M. H. Dehghani, S. H. Hendi, A. Sheykhi, and H. Rastegar Sedehi, “Thermodynamics of rotating black branes in (n+1)-dimensional Einstein-Born-Infeld-dilaton gravity,” JCAP 02 (2007) 020, arXiv:hep-th/0611288.
  101. A. Sheykhi and N. Riazi, “Thermodynamics of black holes in (n+1)-dimensional Einstein-Born-Infeld dilaton gravity,” Phys. Rev. D 75 (2007) 024021, arXiv:hep-th/0610085.
  102. T. Damour and A. M. Polyakov, “The String dilaton and a least coupling principle,” Nucl. Phys. B 423 (1994) 532–558, arXiv:hep-th/9401069.
  103. R. R. Metsaev and A. A. Tseytlin, “ON LOOP CORRECTIONS TO STRING THEORY EFFECTIVE ACTIONS,” Nucl. Phys. B 298 (1988) 109–132.
  104. H. Yajima and T. Tamaki, “Black hole solutions in Euler-Heisenberg theory,” Phys. Rev. D 63 (2001) 064007, arXiv:gr-qc/0005016.
  105. J. D. Bekenstein, “Novel “no-scalar-hair” theorem for black holes,” Phys. Rev. D 51 no. 12, (1995) R6608.
  106. T. P. Sotiriou and S.-Y. Zhou, “Black hole hair in generalized scalar-tensor gravity,” Phys. Rev. Lett. 112 (2014) 251102, arXiv:1312.3622 [gr-qc].
  107. P. Dorlis, N. E. Mavromatos, and S.-N. Vlachos, “Bypassing Bekenstein’s no-scalar-hair theorem without violating the energy conditions,” Phys. Rev. D 108 no. 6, (2023) 064004, arXiv:2305.18031 [gr-qc].
  108. M. Bravo-Gaete and M. Hassaine, “Thermodynamics of a BTZ black hole solution with an Horndeski source,” Phys. Rev. D 90 no. 2, (2014) 024008, arXiv:1405.4935 [hep-th].
  109. S. Fulling and S. Ruijsenaars, “Temperature, periodicity and horizons,” Physics Reports 152 no. 3, (1987) 135–176. https://www.sciencedirect.com/science/article/pii/0370157387901360.
  110. G. W. Gibbons and S. W. Hawking, “Action Integrals and Partition Functions in Quantum Gravity,” Phys. Rev. D 15 (1977) 2752–2756.
  111. R. Arnowitt, S. Deser, and C. W. Misner, “Dynamical structure and definition of energy in general relativity,” Phys. Rev. 116 (Dec, 1959) 1322–1330. https://link.aps.org/doi/10.1103/PhysRev.116.1322.
  112. A. Corichi and D. Núñez, “Introduction to the ADM formalism,” Rev. Mex. Fis. 37 (1991) 720–747, arXiv:2210.10103 [gr-qc].
  113. C. Martinez, R. Troncoso, and J. Zanelli, “Exact black hole solution with a minimally coupled scalar field,” Phys. Rev. D 70 (2004) 084035, arXiv:hep-th/0406111.
  114. G. T. Horowitz, “The dark side of string theory: Black holes and black strings.,” 10, 1992. arXiv:hep-th/9210119.
  115. N. Chatzifotis, P. Dorlis, N. E. Mavromatos, and E. Papantonopoulos, “Thermal stability of hairy black holes,” Phys. Rev. D 107 no. 8, (2023) 084053, arXiv:2302.03980 [gr-qc].
  116. S.-W. Wei, Y.-X. Liu, and R. B. Mann, “Black Hole Solutions as Topological Thermodynamic Defects,” Phys. Rev. Lett. 129 no. 19, (2022) 191101, arXiv:2208.01932 [gr-qc].
  117. T. Regge and J. A. Wheeler, “Stability of a Schwarzschild singularity,” Phys. Rev. 108 (1957) 1063–1069.
  118. F. J. Zerilli, “Effective potential for even parity Regge-Wheeler gravitational perturbation equations,” Phys. Rev. Lett. 24 (1970) 737–738.
  119. F. J. Zerilli, “Gravitational field of a particle falling in a schwarzschild geometry analyzed in tensor harmonics,” Phys. Rev. D 2 (1970) 2141–2160.
  120. F. J. Zerilli, “Perturbation analysis for gravitational and electromagnetic radiation in a reissner-nordstroem geometry,” Phys. Rev. D 9 (1974) 860–868.
  121. D. Astefanesei, J. L. Blázquez-Salcedo, C. Herdeiro, E. Radu, and N. Sanchis-Gual, “Dynamically and thermodynamically stable black holes in Einstein-Maxwell-dilaton gravity,” JHEP 07 (2020) 063, arXiv:1912.02192 [gr-qc].
  122. K. D. Kokkotas and B. G. Schmidt, “Quasinormal modes of stars and black holes,” Living Rev. Rel. 2 (1999) 2, arXiv:gr-qc/9909058.
  123. E. Berti, V. Cardoso, and A. O. Starinets, “Quasinormal modes of black holes and black branes,” Class. Quant. Grav. 26 (2009) 163001, arXiv:0905.2975 [gr-qc].
  124. R. A. Konoplya and A. Zhidenko, “Quasinormal modes of black holes: From astrophysics to string theory,” Rev. Mod. Phys. 83 (2011) 793–836, arXiv:1102.4014 [gr-qc].
  125. B. F. Schutz and C. M. Will, “BLACK HOLE NORMAL MODES: A SEMIANALYTIC APPROACH,” Astrophys. J. Lett. 291 (1985) L33–L36.
  126. S. Iyer and C. M. Will, “Black Hole Normal Modes: A WKB Approach. 1. Foundations and Application of a Higher Order WKB Analysis of Potential Barrier Scattering,” Phys. Rev. D 35 (1987) 3621.
  127. R. A. Konoplya, “Gravitational quasinormal radiation of higher dimensional black holes,” Phys. Rev. D 68 (2003) 124017, arXiv:hep-th/0309030.
  128. C. J. Gao and S. N. Zhang, “Dilaton black holes in de Sitter or Anti-de Sitter universe,” Phys. Rev. D 70 (2004) 124019, arXiv:hep-th/0411104.
  129. G. Obied, H. Ooguri, L. Spodyneiko, and C. Vafa, “De Sitter Space and the Swampland,” arXiv:1806.08362 [hep-th].
  130. E. Palti, “The Swampland: Introduction and Review,” Fortsch. Phys. 67 no. 6, (2019) 1900037, arXiv:1903.06239 [hep-th].
  131. H. Ooguri, E. Palti, G. Shiu, and C. Vafa, “Distance and de Sitter Conjectures on the Swampland,” Phys. Lett. B 788 (2019) 180–184, arXiv:1810.05506 [hep-th].
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube