Scale and Conformal Invariance on (A)dS (2402.12430v2)
Abstract: We examine the question of scale versus conformal invariance on maximally symmetric curved backgrounds and study general 2-derivative conformally invariant free theories of vectors and tensors. For spacetime dimension $D>4$, these conformal theories can be diagonalized into standard massive fields in which unbroken conformal symmetry non-trivially mixes components of different spins. In $D=4$, the tensor case becomes a conformal theory mixing a partially massless spin-2 field with a massless spin-1 field. For massless linearized gravity in $D = 4$, we confirm through direct calculation that correlation functions of gauge-invariant operators take the conformally invariant form, despite the absence of standard conformal symmetry at the level of the action.
- J. Polchinski, “Scale and Conformal Invariance in Quantum Field Theory,” Nucl. Phys. B 303 (1988) 226–236.
- A. Dymarsky, Z. Komargodski, A. Schwimmer, and S. Theisen, “On Scale and Conformal Invariance in Four Dimensions,” JHEP 10 (2015) 171, arXiv:1309.2921 [hep-th].
- A. Dymarsky, K. Farnsworth, Z. Komargodski, M. A. Luty, and V. Prilepina, “Scale Invariance, Conformality, and Generalized Free Fields,” JHEP 02 (2016) 099, arXiv:1402.6322 [hep-th].
- K. Yonekura, “Unitarity, Locality, and Scale versus Conformal Invariance in Four Dimensions,” arXiv:1403.4939 [hep-th].
- V. Riva and J. L. Cardy, “Scale and conformal invariance in field theory: A Physical counterexample,” Phys. Lett. B 622 (2005) 339–342, arXiv:hep-th/0504197.
- Y. Oz, “On Scale Versus Conformal Symmetry in Turbulence,” Eur. Phys. J. C 78 (2018) no. 8, 655, arXiv:1801.04388 [hep-th].
- R. Jackiw and S. Y. Pi, “Tutorial on Scale and Conformal Symmetries in Diverse Dimensions,” J. Phys. A 44 (2011) 223001, arXiv:1101.4886 [math-ph].
- S. El-Showk, Y. Nakayama, and S. Rychkov, “What Maxwell Theory in D<<<>>>4 teaches us about scale and conformal invariance,” Nucl. Phys. B 848 (2011) 578–593, arXiv:1101.5385 [hep-th].
- A. Mauri and M. I. Katsnelson, “Scale without conformal invariance in membrane theory,” Nucl. Phys. B 969 (2021) 115482, arXiv:2104.06859 [cond-mat.stat-mech].
- A. Gimenez-Grau, Y. Nakayama, and S. Rychkov, “Scale without Conformal Invariance in Dipolar Ferromagnets,” arXiv:2309.02514 [hep-th].
- Y. Nakayama, “Scale invariance vs conformal invariance,” Phys. Rept. 569 (2015) 1–93, arXiv:1302.0884 [hep-th].
- K. Farnsworth, K. Hinterbichler, and O. Hulik, “Scale versus conformal invariance at the IR fixed point of quantum gravity,” Phys. Rev. D 105 (2022) no. 6, 066026, arXiv:2110.10160 [hep-th].
- H. Osborn and G. M. Shore, “Correlation functions of the energy momentum tensor on spaces of constant curvature,” Nucl. Phys. B 571 (2000) 287–357, arXiv:hep-th/9909043.
- K. Hinterbichler, J. Stokes, and M. Trodden, “Holographic CFTs on maximally symmetric spaces: correlators, integral transforms and applications,” Phys. Rev. D 92 (2015) no. 6, 065025, arXiv:1505.05513 [hep-th].
- K. Kikuchi, “CFTs on curved spaces,” Adv. Theor. Math. Phys. 26 (2022) no. 4, 835–919, arXiv:1902.06928 [hep-th].
- E. Alvarez and R. Santos-Garcia, “CFT in Conformally Flat Spacetimes,” Phys. Rev. D 101 (2020) no. 12, 125009, arXiv:2001.07957 [hep-th].
- S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity. Cambridge University Press, 7, 2019.
- Cambridge Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge, 2003.
- J. Bonifacio, K. Hinterbichler, A. Joyce, and R. A. Rosen, “Shift Symmetries in (Anti) de Sitter Space,” JHEP 02 (2019) 178, arXiv:1812.08167 [hep-th].
- J. Bonifacio, K. Hinterbichler, A. Joyce, and D. Roest, “Exceptional scalar theories in de Sitter space,” JHEP 04 (2022) 128, arXiv:2112.12151 [hep-th].
- A. Folacci, “BRST quantization of the massless minimally coupled scalar field in de Sitter space: Zero modes, euclideanization and quantization,” Phys. Rev. D 46 (1992) 2553–2559, arXiv:0911.2064 [gr-qc].
- R. R. Metsaev, “Long, partial-short, and special conformal fields,” JHEP 05 (2016) 096, arXiv:1604.02091 [hep-th].
- S. Deser and R. I. Nepomechie, “Gauge Invariance Versus Masslessness in De Sitter Space,” Annals Phys. 154 (1984) 396.
- A. Iorio, L. O’Raifeartaigh, I. Sachs, and C. Wiesendanger, “Weyl gauging and conformal invariance,” Nucl. Phys. B 495 (1997) 433–450, arXiv:hep-th/9607110.
- J. Erdmenger and H. Osborn, “Conformally covariant differential operators: Symmetric tensor fields,” Class. Quant. Grav. 15 (1998) 273–280, arXiv:gr-qc/9708040.
- M. Asorey, L. Rachwał, I. L. Shapiro, and W. Cesar e Silva, “On the vector conformal models in an arbitrary dimension,” Eur. Phys. J. Plus 136 (2021) no. 10, 1043, arXiv:2107.13125 [hep-th].
- A. R. Gover, A. Shaukat, and A. Waldron, “Weyl Invariance and the Origins of Mass,” Phys. Lett. B 675 (2009) 93–97, arXiv:0812.3364 [hep-th].
- A. R. Gover, A. Shaukat, and A. Waldron, “Tractors, Mass and Weyl Invariance,” Nucl. Phys. B 812 (2009) 424–455, arXiv:0810.2867 [hep-th].
- J. Penedones, K. Salehi Vaziri, and Z. Sun, “Hilbert space of Quantum Field Theory in de Sitter spacetime,” arXiv:2301.04146 [hep-th].
- B. Allen and T. Jacobson, “Vector Two Point Functions in Maximally Symmetric Spaces,” Commun. Math. Phys. 103 (1986) 669.
- G. Narain, “Green’s function of the Vector fields on DeSitter Background,” arXiv:1408.6193 [gr-qc].
- A. Belokogne, A. Folacci, and J. Queva, “Stueckelberg massive electromagnetism in de Sitter and anti–de Sitter spacetimes: Two-point functions and renormalized stress-energy tensors,” Phys. Rev. D 94 (2016) no. 10, 105028, arXiv:1610.00244 [gr-qc].
- J. Bonifacio, K. Hinterbichler, L. A. Johnson, and A. Joyce, “Shift-Symmetric Spin-1 Theories,” JHEP 09 (2019) 029, arXiv:1906.10692 [hep-th].
- H. Osborn and A. C. Petkou, “Implications of conformal invariance in field theories for general dimensions,” Annals Phys. 231 (1994) 311–362, arXiv:hep-th/9307010.
- T. Huber and D. Maitre, “HypExp: A Mathematica package for expanding hypergeometric functions around integer-valued parameters,” Comput. Phys. Commun. 175 (2006) 122–144, arXiv:hep-ph/0507094.
- M. Fierz and W. Pauli, “On relativistic wave equations for particles of arbitrary spin in an electromagnetic field,” Proc. Roy. Soc. Lond. A 173 (1939) 211–232.
- K. Hinterbichler, “Theoretical Aspects of Massive Gravity,” Rev. Mod. Phys. 84 (2012) 671–710, arXiv:1105.3735 [hep-th].
- S. Deser and A. Waldron, “Gauge invariances and phases of massive higher spins in (A)dS,” Phys. Rev. Lett. 87 (2001) 031601, arXiv:hep-th/0102166.
- G. Barnich, X. Bekaert, and M. Grigoriev, “Notes on conformal invariance of gauge fields,” J. Phys. A 48 (2015) no. 50, 505402, arXiv:1506.00595 [hep-th].
- S. Deser and A. Waldron, “Conformal invariance of partially massless higher spins,” Phys. Lett. B 603 (2004) 30, arXiv:hep-th/0408155.
- V. A. Letsios, “Unconventional conformal invariance of maximal depth partially massless fields on dS4𝑑subscript𝑆4dS_{4}italic_d italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT and its relation to complex partially massless SUSY,” arXiv:2311.10060 [hep-th].
- S. Faci, “Constructing conformally invariant equations by using Weyl geometry,” Class. Quant. Grav. 30 (2013) 115005, arXiv:1212.2599 [hep-th].
- J. Ben Achour, E. Huguet, and J. Renaud, “Conformally invariant wave equation for a symmetric second rank tensor (“spin-2”) in a d𝑑ditalic_d-dimensional curved background,” Phys. Rev. D 89 (2014) 064041, arXiv:1311.3124 [gr-qc].
- J. Quéva, “A conformally invariant gauge fixing equation and a field strength for the symmetric traceless field over four dimensional conformally flat Einstein spacetimes,” arXiv:1505.02106 [gr-qc].
- R. Aros, F. Bugini, and D. E. Diaz, “GJMS-like operators on symmetric 2-tensors and their gravitational duals,” JHEP 02 (2023) 005, arXiv:2209.00582 [hep-th].
- A. A. Leonovich and V. V. Nesterenko, “Conformally invariant equation for the symmetric tensor field,” tech. rep., Joint Inst. Nucl. Res., Dubna, 1984. https://cds.cern.ch/record/150772.
- A. Higuchi, “Forbidden Mass Range for Spin-2 Field Theory in De Sitter Space-time,” Nucl. Phys. B 282 (1987) 397–436.
- S. Deser and A. Waldron, “Partially Massless Spin 2 Electrodynamics,” Phys. Rev. D 74 (2006) 084036, arXiv:hep-th/0609113.
- S. Garcia-Saenz and R. A. Rosen, “A non-linear extension of the spin-2 partially massless symmetry,” JHEP 05 (2015) 042, arXiv:1410.8734 [hep-th].
- M. S. Drew and J. D. Gegenberg, “Conformally covariant massless spin-2 field equations,” Nuovo Cim. A 60 (1980) 41–56.
- A. O. Barut and B.-W. Xu, “”On conformally covariant spin-2 and spin 3/2 equations”,” J. Phys. A 15 (1982) L207–L210.
- D. Anselmi, “Irreversibility and higher spin conformal field theory,” Class. Quant. Grav. 17 (2000) 2847–2866, arXiv:hep-th/9912122.
- J. Fang, W. Heidenreich, and B. W. Xu, “The ground state solutions of the conformally covariant spin-2 wave equation,” J. Phys. A 16 (1983) L225.
- J. Maldacena, “Einstein Gravity from Conformal Gravity,” arXiv:1105.5632 [hep-th].
- S. Deser, E. Joung, and A. Waldron, “Partial Masslessness and Conformal Gravity,” J. Phys. A 46 (2013) 214019, arXiv:1208.1307 [hep-th].
- S. Deser, E. Joung, and A. Waldron, “Gravitational- and Self- Coupling of Partially Massless Spin 2,” Phys. Rev. D 86 (2012) 104004, arXiv:1301.4181 [hep-th].
- E. Joung, W. Li, and M. Taronna, “No-Go Theorems for Unitary and Interacting Partially Massless Spin-Two Fields,” Phys. Rev. Lett. 113 (2014) 091101, arXiv:1406.2335 [hep-th].
- K. Hinterbichler and R. A. Rosen, “Partially Massless Monopoles and Charges,” Phys. Rev. D 92 (2015) no. 10, 105019, arXiv:1507.00355 [hep-th].
- E. D’Hoker, D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli, “Graviton and gauge boson propagators in AdS(d+1),” Nucl. Phys. B 562 (1999) 330–352, arXiv:hep-th/9902042.
- I. L. Buchbinder, V. A. Krykhtin, and V. D. Pershin, “On consistent equations for massive spin two field coupled to gravity in string theory,” Phys. Lett. B 466 (1999) 216–226, arXiv:hep-th/9908028.
- I. L. Buchbinder, D. M. Gitman, V. A. Krykhtin, and V. D. Pershin, “Equations of motion for massive spin-2 field coupled to gravity,” Nucl. Phys. B 584 (2000) 615–640, arXiv:hep-th/9910188.
- I. Bena, “The Propagator for a general form field in AdS(d+1),” Phys. Rev. D 62 (2000) 126008, arXiv:hep-th/9911073.
- A. Naqvi, “Propagators for massive symmetric tensor and p forms in AdS(d+1),” JHEP 12 (1999) 025, arXiv:hep-th/9911182.
- M. S. Costa, V. Gonçalves, and J. a. Penedones, “Spinning AdS Propagators,” JHEP 09 (2014) 064, arXiv:1404.5625 [hep-th].
- M. B. Fröb, “The Weyl tensor correlator in cosmological spacetimes,” JCAP 12 (2014) 010, arXiv:1409.7964 [hep-th].
- M. B. Fröb, A. Roura, and E. Verdaguer, “Riemann correlator in de Sitter including loop corrections from conformal fields,” JCAP 07 (2014) 048, arXiv:1403.3335 [gr-qc].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.