Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Scale and Conformal Invariance on (A)dS (2402.12430v2)

Published 19 Feb 2024 in hep-th and gr-qc

Abstract: We examine the question of scale versus conformal invariance on maximally symmetric curved backgrounds and study general 2-derivative conformally invariant free theories of vectors and tensors. For spacetime dimension $D>4$, these conformal theories can be diagonalized into standard massive fields in which unbroken conformal symmetry non-trivially mixes components of different spins. In $D=4$, the tensor case becomes a conformal theory mixing a partially massless spin-2 field with a massless spin-1 field. For massless linearized gravity in $D = 4$, we confirm through direct calculation that correlation functions of gauge-invariant operators take the conformally invariant form, despite the absence of standard conformal symmetry at the level of the action.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (66)
  1. J. Polchinski, “Scale and Conformal Invariance in Quantum Field Theory,” Nucl. Phys. B 303 (1988) 226–236.
  2. A. Dymarsky, Z. Komargodski, A. Schwimmer, and S. Theisen, “On Scale and Conformal Invariance in Four Dimensions,” JHEP 10 (2015) 171, arXiv:1309.2921 [hep-th].
  3. A. Dymarsky, K. Farnsworth, Z. Komargodski, M. A. Luty, and V. Prilepina, “Scale Invariance, Conformality, and Generalized Free Fields,” JHEP 02 (2016) 099, arXiv:1402.6322 [hep-th].
  4. K. Yonekura, “Unitarity, Locality, and Scale versus Conformal Invariance in Four Dimensions,” arXiv:1403.4939 [hep-th].
  5. V. Riva and J. L. Cardy, “Scale and conformal invariance in field theory: A Physical counterexample,” Phys. Lett. B 622 (2005) 339–342, arXiv:hep-th/0504197.
  6. Y. Oz, “On Scale Versus Conformal Symmetry in Turbulence,” Eur. Phys. J. C 78 (2018) no. 8, 655, arXiv:1801.04388 [hep-th].
  7. R. Jackiw and S. Y. Pi, “Tutorial on Scale and Conformal Symmetries in Diverse Dimensions,” J. Phys. A 44 (2011) 223001, arXiv:1101.4886 [math-ph].
  8. S. El-Showk, Y. Nakayama, and S. Rychkov, “What Maxwell Theory in D<<<>>>4 teaches us about scale and conformal invariance,” Nucl. Phys. B 848 (2011) 578–593, arXiv:1101.5385 [hep-th].
  9. A. Mauri and M. I. Katsnelson, “Scale without conformal invariance in membrane theory,” Nucl. Phys. B 969 (2021) 115482, arXiv:2104.06859 [cond-mat.stat-mech].
  10. A. Gimenez-Grau, Y. Nakayama, and S. Rychkov, “Scale without Conformal Invariance in Dipolar Ferromagnets,” arXiv:2309.02514 [hep-th].
  11. Y. Nakayama, “Scale invariance vs conformal invariance,” Phys. Rept. 569 (2015) 1–93, arXiv:1302.0884 [hep-th].
  12. K. Farnsworth, K. Hinterbichler, and O. Hulik, “Scale versus conformal invariance at the IR fixed point of quantum gravity,” Phys. Rev. D 105 (2022) no. 6, 066026, arXiv:2110.10160 [hep-th].
  13. H. Osborn and G. M. Shore, “Correlation functions of the energy momentum tensor on spaces of constant curvature,” Nucl. Phys. B 571 (2000) 287–357, arXiv:hep-th/9909043.
  14. K. Hinterbichler, J. Stokes, and M. Trodden, “Holographic CFTs on maximally symmetric spaces: correlators, integral transforms and applications,” Phys. Rev. D 92 (2015) no. 6, 065025, arXiv:1505.05513 [hep-th].
  15. K. Kikuchi, “CFTs on curved spaces,” Adv. Theor. Math. Phys. 26 (2022) no. 4, 835–919, arXiv:1902.06928 [hep-th].
  16. E. Alvarez and R. Santos-Garcia, “CFT in Conformally Flat Spacetimes,” Phys. Rev. D 101 (2020) no. 12, 125009, arXiv:2001.07957 [hep-th].
  17. S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity. Cambridge University Press, 7, 2019.
  18. Cambridge Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge, 2003.
  19. J. Bonifacio, K. Hinterbichler, A. Joyce, and R. A. Rosen, “Shift Symmetries in (Anti) de Sitter Space,” JHEP 02 (2019) 178, arXiv:1812.08167 [hep-th].
  20. J. Bonifacio, K. Hinterbichler, A. Joyce, and D. Roest, “Exceptional scalar theories in de Sitter space,” JHEP 04 (2022) 128, arXiv:2112.12151 [hep-th].
  21. A. Folacci, “BRST quantization of the massless minimally coupled scalar field in de Sitter space: Zero modes, euclideanization and quantization,” Phys. Rev. D 46 (1992) 2553–2559, arXiv:0911.2064 [gr-qc].
  22. R. R. Metsaev, “Long, partial-short, and special conformal fields,” JHEP 05 (2016) 096, arXiv:1604.02091 [hep-th].
  23. S. Deser and R. I. Nepomechie, “Gauge Invariance Versus Masslessness in De Sitter Space,” Annals Phys. 154 (1984) 396.
  24. A. Iorio, L. O’Raifeartaigh, I. Sachs, and C. Wiesendanger, “Weyl gauging and conformal invariance,” Nucl. Phys. B 495 (1997) 433–450, arXiv:hep-th/9607110.
  25. J. Erdmenger and H. Osborn, “Conformally covariant differential operators: Symmetric tensor fields,” Class. Quant. Grav. 15 (1998) 273–280, arXiv:gr-qc/9708040.
  26. M. Asorey, L. Rachwał, I. L. Shapiro, and W. Cesar e Silva, “On the vector conformal models in an arbitrary dimension,” Eur. Phys. J. Plus 136 (2021) no. 10, 1043, arXiv:2107.13125 [hep-th].
  27. A. R. Gover, A. Shaukat, and A. Waldron, “Weyl Invariance and the Origins of Mass,” Phys. Lett. B 675 (2009) 93–97, arXiv:0812.3364 [hep-th].
  28. A. R. Gover, A. Shaukat, and A. Waldron, “Tractors, Mass and Weyl Invariance,” Nucl. Phys. B 812 (2009) 424–455, arXiv:0810.2867 [hep-th].
  29. J. Penedones, K. Salehi Vaziri, and Z. Sun, “Hilbert space of Quantum Field Theory in de Sitter spacetime,” arXiv:2301.04146 [hep-th].
  30. B. Allen and T. Jacobson, “Vector Two Point Functions in Maximally Symmetric Spaces,” Commun. Math. Phys. 103 (1986) 669.
  31. G. Narain, “Green’s function of the Vector fields on DeSitter Background,” arXiv:1408.6193 [gr-qc].
  32. A. Belokogne, A. Folacci, and J. Queva, “Stueckelberg massive electromagnetism in de Sitter and anti–de Sitter spacetimes: Two-point functions and renormalized stress-energy tensors,” Phys. Rev. D 94 (2016) no. 10, 105028, arXiv:1610.00244 [gr-qc].
  33. J. Bonifacio, K. Hinterbichler, L. A. Johnson, and A. Joyce, “Shift-Symmetric Spin-1 Theories,” JHEP 09 (2019) 029, arXiv:1906.10692 [hep-th].
  34. H. Osborn and A. C. Petkou, “Implications of conformal invariance in field theories for general dimensions,” Annals Phys. 231 (1994) 311–362, arXiv:hep-th/9307010.
  35. T. Huber and D. Maitre, “HypExp: A Mathematica package for expanding hypergeometric functions around integer-valued parameters,” Comput. Phys. Commun. 175 (2006) 122–144, arXiv:hep-ph/0507094.
  36. M. Fierz and W. Pauli, “On relativistic wave equations for particles of arbitrary spin in an electromagnetic field,” Proc. Roy. Soc. Lond. A 173 (1939) 211–232.
  37. K. Hinterbichler, “Theoretical Aspects of Massive Gravity,” Rev. Mod. Phys. 84 (2012) 671–710, arXiv:1105.3735 [hep-th].
  38. S. Deser and A. Waldron, “Gauge invariances and phases of massive higher spins in (A)dS,” Phys. Rev. Lett. 87 (2001) 031601, arXiv:hep-th/0102166.
  39. G. Barnich, X. Bekaert, and M. Grigoriev, “Notes on conformal invariance of gauge fields,” J. Phys. A 48 (2015) no. 50, 505402, arXiv:1506.00595 [hep-th].
  40. S. Deser and A. Waldron, “Conformal invariance of partially massless higher spins,” Phys. Lett. B 603 (2004) 30, arXiv:hep-th/0408155.
  41. V. A. Letsios, “Unconventional conformal invariance of maximal depth partially massless fields on d⁢S4𝑑subscript𝑆4dS_{4}italic_d italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT and its relation to complex partially massless SUSY,” arXiv:2311.10060 [hep-th].
  42. S. Faci, “Constructing conformally invariant equations by using Weyl geometry,” Class. Quant. Grav. 30 (2013) 115005, arXiv:1212.2599 [hep-th].
  43. J. Ben Achour, E. Huguet, and J. Renaud, “Conformally invariant wave equation for a symmetric second rank tensor (“spin-2”) in a d𝑑ditalic_d-dimensional curved background,” Phys. Rev. D 89 (2014) 064041, arXiv:1311.3124 [gr-qc].
  44. J. Quéva, “A conformally invariant gauge fixing equation and a field strength for the symmetric traceless field over four dimensional conformally flat Einstein spacetimes,” arXiv:1505.02106 [gr-qc].
  45. R. Aros, F. Bugini, and D. E. Diaz, “GJMS-like operators on symmetric 2-tensors and their gravitational duals,” JHEP 02 (2023) 005, arXiv:2209.00582 [hep-th].
  46. A. A. Leonovich and V. V. Nesterenko, “Conformally invariant equation for the symmetric tensor field,” tech. rep., Joint Inst. Nucl. Res., Dubna, 1984. https://cds.cern.ch/record/150772.
  47. A. Higuchi, “Forbidden Mass Range for Spin-2 Field Theory in De Sitter Space-time,” Nucl. Phys. B 282 (1987) 397–436.
  48. S. Deser and A. Waldron, “Partially Massless Spin 2 Electrodynamics,” Phys. Rev. D 74 (2006) 084036, arXiv:hep-th/0609113.
  49. S. Garcia-Saenz and R. A. Rosen, “A non-linear extension of the spin-2 partially massless symmetry,” JHEP 05 (2015) 042, arXiv:1410.8734 [hep-th].
  50. M. S. Drew and J. D. Gegenberg, “Conformally covariant massless spin-2 field equations,” Nuovo Cim. A 60 (1980) 41–56.
  51. A. O. Barut and B.-W. Xu, “”On conformally covariant spin-2 and spin 3/2 equations”,” J. Phys. A 15 (1982) L207–L210.
  52. D. Anselmi, “Irreversibility and higher spin conformal field theory,” Class. Quant. Grav. 17 (2000) 2847–2866, arXiv:hep-th/9912122.
  53. J. Fang, W. Heidenreich, and B. W. Xu, “The ground state solutions of the conformally covariant spin-2 wave  equation,” J. Phys. A 16 (1983) L225.
  54. J. Maldacena, “Einstein Gravity from Conformal Gravity,” arXiv:1105.5632 [hep-th].
  55. S. Deser, E. Joung, and A. Waldron, “Partial Masslessness and Conformal Gravity,” J. Phys. A 46 (2013) 214019, arXiv:1208.1307 [hep-th].
  56. S. Deser, E. Joung, and A. Waldron, “Gravitational- and Self- Coupling of Partially Massless Spin 2,” Phys. Rev. D 86 (2012) 104004, arXiv:1301.4181 [hep-th].
  57. E. Joung, W. Li, and M. Taronna, “No-Go Theorems for Unitary and Interacting Partially Massless Spin-Two Fields,” Phys. Rev. Lett. 113 (2014) 091101, arXiv:1406.2335 [hep-th].
  58. K. Hinterbichler and R. A. Rosen, “Partially Massless Monopoles and Charges,” Phys. Rev. D 92 (2015) no. 10, 105019, arXiv:1507.00355 [hep-th].
  59. E. D’Hoker, D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli, “Graviton and gauge boson propagators in AdS(d+1),” Nucl. Phys. B 562 (1999) 330–352, arXiv:hep-th/9902042.
  60. I. L. Buchbinder, V. A. Krykhtin, and V. D. Pershin, “On consistent equations for massive spin two field coupled to gravity in string theory,” Phys. Lett. B 466 (1999) 216–226, arXiv:hep-th/9908028.
  61. I. L. Buchbinder, D. M. Gitman, V. A. Krykhtin, and V. D. Pershin, “Equations of motion for massive spin-2 field coupled to gravity,” Nucl. Phys. B 584 (2000) 615–640, arXiv:hep-th/9910188.
  62. I. Bena, “The Propagator for a general form field in AdS(d+1),” Phys. Rev. D 62 (2000) 126008, arXiv:hep-th/9911073.
  63. A. Naqvi, “Propagators for massive symmetric tensor and p forms in AdS(d+1),” JHEP 12 (1999) 025, arXiv:hep-th/9911182.
  64. M. S. Costa, V. Gonçalves, and J. a. Penedones, “Spinning AdS Propagators,” JHEP 09 (2014) 064, arXiv:1404.5625 [hep-th].
  65. M. B. Fröb, “The Weyl tensor correlator in cosmological spacetimes,” JCAP 12 (2014) 010, arXiv:1409.7964 [hep-th].
  66. M. B. Fröb, A. Roura, and E. Verdaguer, “Riemann correlator in de Sitter including loop corrections from conformal fields,” JCAP 07 (2014) 048, arXiv:1403.3335 [gr-qc].
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 posts and received 4 likes.