The sign of linear periods (2402.12106v3)
Abstract: Let $G$ be a group with subgroup $H$, and let $(\pi,V)$ be a complex representation of $G$. The natural action of the normalizer $N$ of $H$ in $G$ on the space $\mathrm{Hom}H(\pi,\mathbb{C})$ of $H$-invariant linear forms on $V$, provides a representation $\chi{\pi}$ of $N$ trivial on $H$, which is a character when $\mathrm{Hom}H(\pi,\mathbb{C})$ is one dimensional. If moreover $G$ is a reductive group over a local field, and $\pi$ is smooth irreducible, it is an interesting problem to express $\chi{\pi}$ in terms of the possibly conjectural Langlands parameter $\phi_\pi$ of $\pi$. In this paper we consider the following situation: $G=\mathrm{GL}m(D)$ for $D$ a central division algebra of dimension $d2$ over a local field $F$ of characteristic zero, $H$ is the centralizer of a non central element $\delta\in G$ such that $\delta2$ is in the center of $G$, and $\pi$ has generic Jacquet-Langlands transfer to $\mathrm{GL}{md}(F)$. In this setting the space $\mathrm{Hom}H(\pi,\mathbb{C})$ is at most one dimensional. When $\mathrm{Hom}_H(\pi,\mathbb{C})\simeq \mathbb{C}$ and $H\neq N$, we prove that the value of the $\chi{\pi}$ on the non trivial class of $\frac{N}{H}$ is $(-1)m\epsilon(\phi_\pi)$ where $\epsilon(\phi_\pi)$ is the root number of $\phi_{\pi}$. Along the way we extend many useful multiplicity one results for linear and Shalika models to the case of non split $G$. When $F$ is $p$-adic we also classify standard modules with linear periods and Shalika models, which are new results even when $D=F$.
- A. Aizenbud and D. Gourevitch. Generalized Harish-Chandra descent, Gelfand pairs, and an archimedean analog of Jacquet-Rallis’s theorem. Duke Math. J., 149(3), 2009.
- Uniqueness of Shalika functionals: the Archimedean case. Pacific J. Math., 243(2):201–212, 2009.
- Galois self-dual cuspidal types and Asai local factors. J. Eur. Math. Soc. (JEMS), 23(9):3129–3191, 2021.
- Alexandru Ioan Badulescu. Jacquet-Langlands et unitarisabilité. J. Inst. Math. Jussieu, 6(3):349–379, 2007.
- Alexandru Ioan Badulescu. Global jacquet–langlands correspondence, multiplicity one and classification of automorphic representations. Inventiones mathematicae, 172:383–438, 2008.
- Vecteurs distributions HH\mathrm{H}roman_H-invariants de représentations induites, pour un espace symétrique réductif p𝑝pitalic_p-adique G/HGH\mathrm{G/H}roman_G / roman_H. In Annales de l’institut Fourier, volume 58, pages 213–261, 2008.
- Generalized Whittaker models and the Bernstein center. Amer. J. Math., 125(3):513–547, 2003.
- P. Broussous and N. Matringe. Multiplicity one for pairs of prasad–takloo-bighash type. Int. Math. Res. Not. IMRN, 2021(21):16423–16447, 2021.
- The global Gan-Gross-Prasad conjecture for unitary groups: the endoscopic case. Publ. Math. Inst. Hautes Études Sci., 135:183–336, 2022.
- A local trace formula for the generalized Shalika model. Duke Math. J., 168(7):1303–1385, 2019.
- A. I. Badulescu and D. Renard. Unitary dual of GL(n)GL𝑛{\rm GL}(n)roman_GL ( italic_n ) at Archimedean places and global Jacquet-Langlands correspondence. Compos. Math., 146(5):1115–1164, 2010.
- J. Bernstein and A. V. Zelevinskii. Representations of the group GLGL\rm{GL}roman_GL(n,F) where F is a non-archimedean local field. Uspekhi Matematicheskikh Nauk, 31(3):5–70, 1976.
- J. Bernstein and A. V. Zelevinsky. Induced representations of reductive 𝔭𝔭\mathfrak{p}fraktur_p-adic groups. I. In Annales scientifiques de l’École normale supérieure, volume 10, pages 441–472, 1977.
- Marion Chommaux. Distinction of the Steinberg representation and a conjecture of Prasad and Takloo-Bighash. J. Number Theory, 202:200–219, 2019.
- The functional equation of the Jacquet-Shalika integral representation of the local exterior-square L𝐿Litalic_L-function. Math. Res. Lett., 22(3):697–717, 2015.
- Pierre Deligne. Les constantes locales de l’équation fonctionnelle de la fonction L𝐿Litalic_L d’Artin d’une représentation orthogonale. Invent. Math., 35:299–316, 1976.
- Représentations des algebres centrales simples p-adiques. Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 33:117, 1984.
- N. Duhamel. Formule de plancherel sur GLn×GLn\GL2n\subscriptGLnsubscriptGLnsubscriptGL2n\mathrm{GL_{n}\times GL_{n}\backslash GL_{2n}}roman_GL start_POSTSUBSCRIPT roman_n end_POSTSUBSCRIPT × roman_GL start_POSTSUBSCRIPT roman_n end_POSTSUBSCRIPT \ roman_GL start_POSTSUBSCRIPT 2 roman_n end_POSTSUBSCRIPT. arXiv:1912.08497, 2019.
- Linear periods. J. reine angew. Math, 443(91):139, 1993.
- A. Fröhlich and J. Queyrut. On the functional equation of the Artin L𝐿Litalic_L-function for characters of real representations. Invent. Math., 20:125–138, 1973.
- Wee Teck Gan. Periods and theta correspondence. In Representations of reductive groups, volume 101 of Proc. Sympos. Pure Math., pages 113–132. Amer. Math. Soc., Providence, RI, 2019.
- R. Godement and H. Jacquet. Zeta functions of simple algebras, volume 260. Springer, 2006.
- Arithmetic invariants of discrete Langlands parameters. Duke Math. J., 154(3):431–508, 2010.
- Jiandong Guo. Uniqueness of generalized Waldspurger model for GL(2n)GL2𝑛{\rm GL}(2n)roman_GL ( 2 italic_n ). Pacific J. Math., 180(2):273–289, 1997.
- Guy Henniart. Une preuve simple des conjectures de langlands pour GL(n) sur un corps p-adique. Inventiones mathematicae, 139(2):439–455, 2000.
- The Geometry and Cohomology of Some Simple Shimura Varieties.(AM-151), volume 151. Princeton university press, 2001.
- Hervé Jacquet. Principal L𝐿Litalic_L-functions of the linear group. In Automorphic forms, representations and L𝐿Litalic_L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, volume XXXIII of Proc. Sympos. Pure Math., pages 63–86. Amer. Math. Soc., Providence, RI, 1979.
- Uniqueness of linear periods. Compositio Mathematica, 102(1):65–123, 1996.
- Subrepresentation theorem for p𝑝pitalic_p-adic symmetric spaces. Int. Math. Res. Not. IMRN, (11):Art. ID rnn028, 40, 2008.
- Huang Liping. The minimal polynomial of a matrix over a central simple algebra. Linear and Multilinear Algebra, 45(2-3):99–107, 1998.
- Whittaker-Fourier coefficients of cusp forms on Sp~nsubscript~Sp𝑛\widetilde{\rm Sp}_{n}over~ start_ARG roman_Sp end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT: reduction to a local statement. Amer. J. Math., 139(1):1–55, 2017.
- Nadir Matringe. Cuspidal representations of GL (n, F) distinguished by a maximal levi subgroup, with F a non-archimedean local field. Comptes Rendus Mathematique, 350(17-18):797–800, 2012.
- Nadir Matringe. Linear and shalika local periods for the mirabolic group, and some consequences. Journal of Number Theory, 138:1–19, 2014.
- Nadir Matringe. On the local Bump–Friedberg L𝐿Litalic_L-function. Journal für die reine und angewandte Mathematik (Crelles Journal), 2015(709):119–170, 2015.
- Nadir Matringe. Distinction of the steinberg representation for inner forms of gl (n). Mathematische Zeitschrift, 287:881–895, 2017.
- Nadir Matringe. On the local Bump-Friedberg L𝐿Litalic_L-function II. Manuscripta Math., 152(1-2):223–240, 2017.
- Nadir Matringe. Shalika periods and parabolic induction for GL(n)𝐺𝐿𝑛GL(n)italic_G italic_L ( italic_n ) over a non-archimedean local field. Bull. Lond. Math. Soc., 49(3):417–427, 2017.
- Nadir Matringe. Gamma factors of intertwining periods and distinction for inner forms of GL (n). Journal of Functional Analysis, 281(10):109223, 2021.
- Intertwining periods and distinction for p-adic galois symmetric pairs. Proceedings of the London Mathematical Society, 125(5):1179–1252, 2022.
- On local intertwining periods. J. Funct. Anal., 286(4):Paper No. 110293, 2024.
- C. Mœitalic-œ\oeitalic_œglin and J.-L. Waldspurger. Modèles de Whittaker dégénérés pour des groupes p𝑝pitalic_p-adiques. Math. Z., 196(3):427–452, 1987.
- Omer Offen. On local root numbers and distinction. J. Reine Angew. Math., 652:165–205, 2011.
- Omer Offen. On parabolic induction associated with a p𝑝pitalic_p-adic symmetric space. J. Number Theory, 170:211–227, 2017.
- Youngbin Ok. Distinction and gamma factors at 1/2: Supercuspidal case. ProQuest LLC, Ann Arbor, MI, 1997. Thesis (Ph.D.)–Columbia University.
- Dipendra Prasad and A. Raghuram. Kirillov theory for GL2(D)subscriptGL2𝐷{\rm GL}_{2}(D)roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_D ) where D𝐷Ditalic_D is a division algebra over a non-Archimedean local field. Duke Math. J., 104(1):19–44, 2000.
- Dipendra Prasad. Some applications of seesaw duality to branching laws. Math. Ann., 304(1):1–20, 1996.
- Generalised form of a conjecture of Jacquet and a local consequence. J. Reine Angew. Math., 616:219–236, 2008.
- Epsilon Dichotomy for Linear Models: The Archimedean Case. Int. Math. Res. Not. IMRN, (20):17853–17891, 2023.
- Miyu Suzuki. Classification of standard modules with linear periods. J. Number Theory, 218:302–310, 2021.
- Miyu Suzuki. A reformulation of the conjecture of Prasad and Takloo-Bighash. arXiv:2312.16393, 2023.
- Periods and harmonic analysis on spherical varieties. Astérisque, (396):viii+360, 2017.
- Linear intertwining periods and epsilon dichotomy for linear models. to appear in Math. Ann., 2020.
- V. Sécherre. Représentations cuspidales de gl(r,d) distinguées par une involution intérieure. preprint, Ann. Scient. Éc. Norm. Sup. arxiv.org/abs/2005.05615, 2016.
- Marko Tadic. Induced representations of GLGL\rm{GL}roman_GL(n, A) for p-adic division algebras A. J. reine angew. Math, 405:48–77, 1990.
- J. Tate. Number theoretic background. In Automorphic forms, representations and L𝐿Litalic_L-functions, Part 2, Proc. Sympos. Pure Math., XXXIII, pages 3–26. Amer. Math. Soc., Providence, R.I., 1979.
- Hang Xue. Epsilon dichotomy for linear models. Algebra Number Theory, 15(1):173–215, 2021.
- H. Xue and W. Zhang. Twisted linear periods and a new relative trace formula. preprint, to appear in Peking Math J. arXiv:2209.08366, 2016.
- Chang Yang. Linear periods for unitary representations. Math. Z., 302(4):2253–2284, 2022.
- A. V. Zelevinsky. Induced representations of reductive p-adic groups. II. on irreducible representations of GL(n)GL𝑛\mathrm{GL}(n)roman_GL ( italic_n ). Annales Scientifiques de l’École Normale Supérieure, 13(2):165–210, 1980.
- Chong Zhang. On linear periods. Math. Z., 279(1-2):61–84, 2015.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.