Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

The sign of linear periods (2402.12106v3)

Published 19 Feb 2024 in math.RT

Abstract: Let $G$ be a group with subgroup $H$, and let $(\pi,V)$ be a complex representation of $G$. The natural action of the normalizer $N$ of $H$ in $G$ on the space $\mathrm{Hom}H(\pi,\mathbb{C})$ of $H$-invariant linear forms on $V$, provides a representation $\chi{\pi}$ of $N$ trivial on $H$, which is a character when $\mathrm{Hom}H(\pi,\mathbb{C})$ is one dimensional. If moreover $G$ is a reductive group over a local field, and $\pi$ is smooth irreducible, it is an interesting problem to express $\chi{\pi}$ in terms of the possibly conjectural Langlands parameter $\phi_\pi$ of $\pi$. In this paper we consider the following situation: $G=\mathrm{GL}m(D)$ for $D$ a central division algebra of dimension $d2$ over a local field $F$ of characteristic zero, $H$ is the centralizer of a non central element $\delta\in G$ such that $\delta2$ is in the center of $G$, and $\pi$ has generic Jacquet-Langlands transfer to $\mathrm{GL}{md}(F)$. In this setting the space $\mathrm{Hom}H(\pi,\mathbb{C})$ is at most one dimensional. When $\mathrm{Hom}_H(\pi,\mathbb{C})\simeq \mathbb{C}$ and $H\neq N$, we prove that the value of the $\chi{\pi}$ on the non trivial class of $\frac{N}{H}$ is $(-1)m\epsilon(\phi_\pi)$ where $\epsilon(\phi_\pi)$ is the root number of $\phi_{\pi}$. Along the way we extend many useful multiplicity one results for linear and Shalika models to the case of non split $G$. When $F$ is $p$-adic we also classify standard modules with linear periods and Shalika models, which are new results even when $D=F$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. A. Aizenbud and D. Gourevitch. Generalized Harish-Chandra descent, Gelfand pairs, and an archimedean analog of Jacquet-Rallis’s theorem. Duke Math. J., 149(3), 2009.
  2. Uniqueness of Shalika functionals: the Archimedean case. Pacific J. Math., 243(2):201–212, 2009.
  3. Galois self-dual cuspidal types and Asai local factors. J. Eur. Math. Soc. (JEMS), 23(9):3129–3191, 2021.
  4. Alexandru Ioan Badulescu. Jacquet-Langlands et unitarisabilité. J. Inst. Math. Jussieu, 6(3):349–379, 2007.
  5. Alexandru Ioan Badulescu. Global jacquet–langlands correspondence, multiplicity one and classification of automorphic representations. Inventiones mathematicae, 172:383–438, 2008.
  6. Vecteurs distributions HH\mathrm{H}roman_H-invariants de représentations induites, pour un espace symétrique réductif p𝑝pitalic_p-adique G/HGH\mathrm{G/H}roman_G / roman_H. In Annales de l’institut Fourier, volume 58, pages 213–261, 2008.
  7. Generalized Whittaker models and the Bernstein center. Amer. J. Math., 125(3):513–547, 2003.
  8. P. Broussous and N. Matringe. Multiplicity one for pairs of prasad–takloo-bighash type. Int. Math. Res. Not. IMRN, 2021(21):16423–16447, 2021.
  9. The global Gan-Gross-Prasad conjecture for unitary groups: the endoscopic case. Publ. Math. Inst. Hautes Études Sci., 135:183–336, 2022.
  10. A local trace formula for the generalized Shalika model. Duke Math. J., 168(7):1303–1385, 2019.
  11. A. I. Badulescu and D. Renard. Unitary dual of GL⁢(n)GL𝑛{\rm GL}(n)roman_GL ( italic_n ) at Archimedean places and global Jacquet-Langlands correspondence. Compos. Math., 146(5):1115–1164, 2010.
  12. J. Bernstein and A. V. Zelevinskii. Representations of the group GLGL\rm{GL}roman_GL(n,F) where F is a non-archimedean local field. Uspekhi Matematicheskikh Nauk, 31(3):5–70, 1976.
  13. J. Bernstein and A. V. Zelevinsky. Induced representations of reductive 𝔭𝔭\mathfrak{p}fraktur_p-adic groups. I. In Annales scientifiques de l’École normale supérieure, volume 10, pages 441–472, 1977.
  14. Marion Chommaux. Distinction of the Steinberg representation and a conjecture of Prasad and Takloo-Bighash. J. Number Theory, 202:200–219, 2019.
  15. The functional equation of the Jacquet-Shalika integral representation of the local exterior-square L𝐿Litalic_L-function. Math. Res. Lett., 22(3):697–717, 2015.
  16. Pierre Deligne. Les constantes locales de l’équation fonctionnelle de la fonction L𝐿Litalic_L d’Artin d’une représentation orthogonale. Invent. Math., 35:299–316, 1976.
  17. Représentations des algebres centrales simples p-adiques. Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 33:117, 1984.
  18. N. Duhamel. Formule de plancherel sur GLn×GLn\GL2⁢n\subscriptGLnsubscriptGLnsubscriptGL2n\mathrm{GL_{n}\times GL_{n}\backslash GL_{2n}}roman_GL start_POSTSUBSCRIPT roman_n end_POSTSUBSCRIPT × roman_GL start_POSTSUBSCRIPT roman_n end_POSTSUBSCRIPT \ roman_GL start_POSTSUBSCRIPT 2 roman_n end_POSTSUBSCRIPT. arXiv:1912.08497, 2019.
  19. Linear periods. J. reine angew. Math, 443(91):139, 1993.
  20. A. Fröhlich and J. Queyrut. On the functional equation of the Artin L𝐿Litalic_L-function for characters of real representations. Invent. Math., 20:125–138, 1973.
  21. Wee Teck Gan. Periods and theta correspondence. In Representations of reductive groups, volume 101 of Proc. Sympos. Pure Math., pages 113–132. Amer. Math. Soc., Providence, RI, 2019.
  22. R. Godement and H. Jacquet. Zeta functions of simple algebras, volume 260. Springer, 2006.
  23. Arithmetic invariants of discrete Langlands parameters. Duke Math. J., 154(3):431–508, 2010.
  24. Jiandong Guo. Uniqueness of generalized Waldspurger model for GL⁢(2⁢n)GL2𝑛{\rm GL}(2n)roman_GL ( 2 italic_n ). Pacific J. Math., 180(2):273–289, 1997.
  25. Guy Henniart. Une preuve simple des conjectures de langlands pour GL(n) sur un corps p-adique. Inventiones mathematicae, 139(2):439–455, 2000.
  26. The Geometry and Cohomology of Some Simple Shimura Varieties.(AM-151), volume 151. Princeton university press, 2001.
  27. Hervé Jacquet. Principal L𝐿Litalic_L-functions of the linear group. In Automorphic forms, representations and L𝐿Litalic_L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, volume XXXIII of Proc. Sympos. Pure Math., pages 63–86. Amer. Math. Soc., Providence, RI, 1979.
  28. Uniqueness of linear periods. Compositio Mathematica, 102(1):65–123, 1996.
  29. Subrepresentation theorem for p𝑝pitalic_p-adic symmetric spaces. Int. Math. Res. Not. IMRN, (11):Art. ID rnn028, 40, 2008.
  30. Huang Liping. The minimal polynomial of a matrix over a central simple algebra. Linear and Multilinear Algebra, 45(2-3):99–107, 1998.
  31. Whittaker-Fourier coefficients of cusp forms on Sp~nsubscript~Sp𝑛\widetilde{\rm Sp}_{n}over~ start_ARG roman_Sp end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT: reduction to a local statement. Amer. J. Math., 139(1):1–55, 2017.
  32. Nadir Matringe. Cuspidal representations of GL (n, F) distinguished by a maximal levi subgroup, with F a non-archimedean local field. Comptes Rendus Mathematique, 350(17-18):797–800, 2012.
  33. Nadir Matringe. Linear and shalika local periods for the mirabolic group, and some consequences. Journal of Number Theory, 138:1–19, 2014.
  34. Nadir Matringe. On the local Bump–Friedberg L𝐿Litalic_L-function. Journal für die reine und angewandte Mathematik (Crelles Journal), 2015(709):119–170, 2015.
  35. Nadir Matringe. Distinction of the steinberg representation for inner forms of gl (n). Mathematische Zeitschrift, 287:881–895, 2017.
  36. Nadir Matringe. On the local Bump-Friedberg L𝐿Litalic_L-function II. Manuscripta Math., 152(1-2):223–240, 2017.
  37. Nadir Matringe. Shalika periods and parabolic induction for G⁢L⁢(n)𝐺𝐿𝑛GL(n)italic_G italic_L ( italic_n ) over a non-archimedean local field. Bull. Lond. Math. Soc., 49(3):417–427, 2017.
  38. Nadir Matringe. Gamma factors of intertwining periods and distinction for inner forms of GL (n). Journal of Functional Analysis, 281(10):109223, 2021.
  39. Intertwining periods and distinction for p-adic galois symmetric pairs. Proceedings of the London Mathematical Society, 125(5):1179–1252, 2022.
  40. On local intertwining periods. J. Funct. Anal., 286(4):Paper No. 110293, 2024.
  41. C. Mœitalic-œ\oeitalic_œglin and J.-L. Waldspurger. Modèles de Whittaker dégénérés pour des groupes p𝑝pitalic_p-adiques. Math. Z., 196(3):427–452, 1987.
  42. Omer Offen. On local root numbers and distinction. J. Reine Angew. Math., 652:165–205, 2011.
  43. Omer Offen. On parabolic induction associated with a p𝑝pitalic_p-adic symmetric space. J. Number Theory, 170:211–227, 2017.
  44. Youngbin Ok. Distinction and gamma factors at 1/2: Supercuspidal case. ProQuest LLC, Ann Arbor, MI, 1997. Thesis (Ph.D.)–Columbia University.
  45. Dipendra Prasad and A. Raghuram. Kirillov theory for GL2⁢(D)subscriptGL2𝐷{\rm GL}_{2}(D)roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_D ) where D𝐷Ditalic_D is a division algebra over a non-Archimedean local field. Duke Math. J., 104(1):19–44, 2000.
  46. Dipendra Prasad. Some applications of seesaw duality to branching laws. Math. Ann., 304(1):1–20, 1996.
  47. Generalised form of a conjecture of Jacquet and a local consequence. J. Reine Angew. Math., 616:219–236, 2008.
  48. Epsilon Dichotomy for Linear Models: The Archimedean Case. Int. Math. Res. Not. IMRN, (20):17853–17891, 2023.
  49. Miyu Suzuki. Classification of standard modules with linear periods. J. Number Theory, 218:302–310, 2021.
  50. Miyu Suzuki. A reformulation of the conjecture of Prasad and Takloo-Bighash. arXiv:2312.16393, 2023.
  51. Periods and harmonic analysis on spherical varieties. Astérisque, (396):viii+360, 2017.
  52. Linear intertwining periods and epsilon dichotomy for linear models. to appear in Math. Ann., 2020.
  53. V. Sécherre. Représentations cuspidales de gl(r,d) distinguées par une involution intérieure. preprint, Ann. Scient. Éc. Norm. Sup. arxiv.org/abs/2005.05615, 2016.
  54. Marko Tadic. Induced representations of GLGL\rm{GL}roman_GL(n, A) for p-adic division algebras A. J. reine angew. Math, 405:48–77, 1990.
  55. J. Tate. Number theoretic background. In Automorphic forms, representations and L𝐿Litalic_L-functions, Part 2, Proc. Sympos. Pure Math., XXXIII, pages 3–26. Amer. Math. Soc., Providence, R.I., 1979.
  56. Hang Xue. Epsilon dichotomy for linear models. Algebra Number Theory, 15(1):173–215, 2021.
  57. H. Xue and W. Zhang. Twisted linear periods and a new relative trace formula. preprint, to appear in Peking Math J. arXiv:2209.08366, 2016.
  58. Chang Yang. Linear periods for unitary representations. Math. Z., 302(4):2253–2284, 2022.
  59. A. V. Zelevinsky. Induced representations of reductive p-adic groups. II. on irreducible representations of GL⁢(n)GL𝑛\mathrm{GL}(n)roman_GL ( italic_n ). Annales Scientifiques de l’École Normale Supérieure, 13(2):165–210, 1980.
  60. Chong Zhang. On linear periods. Math. Z., 279(1-2):61–84, 2015.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.