Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards Reliable Evaluation of Neural Program Repair with Natural Robustness Testing (2402.11892v2)

Published 19 Feb 2024 in cs.SE and cs.AI

Abstract: In this paper, we propose shifting the focus of robustness evaluation for Neural Program Repair (NPR) techniques toward naturally-occurring data transformations. To accomplish this, we first examine the naturalness of semantic-preserving transformations through a two-stage human study. This study includes (1) interviews with senior software developers to establish concrete criteria for evaluating the naturalness of these transformations, and (2) a survey involving 10 developers to assess the naturalness of 1,178 transformations, i.e., pairs of original and transformed programs, applied to 225 real-world bugs. Our findings show that only 60% of these transformations are deemed natural, while 20% are considered unnatural, with strong agreement among annotators. Moreover, the unnaturalness of these transformations significantly impacts both their applicability to benchmarks and the conclusions drawn from robustness testing. Next, we conduct natural robustness testing on NPR techniques to assess their true effectiveness against real-world data variations. Our experimental results reveal a substantial number of prediction changes in NPR techniques, leading to significant reductions in both plausible and correct patch rates when comparing performance on the original and transformed datasets. Additionally, we observe notable differences in performance improvements between NPR techniques, suggesting potential biases on NPR evaluation introduced by limited datasets. Finally, we propose an LLM-based metric to automate the assessment of transformation naturalness, ensuring the scalability of natural robustness testing.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: