Papers
Topics
Authors
Recent
2000 character limit reached

Chain-of-Instructions: Compositional Instruction Tuning on Large Language Models

Published 18 Feb 2024 in cs.CL | (2402.11532v3)

Abstract: Fine-tuning LLMs with a collection of large and diverse instructions has improved the model's generalization to different tasks, even for unseen tasks. However, most existing instruction datasets include only single instructions, and they struggle to follow complex instructions composed of multiple subtasks. In this work, we propose a novel concept of compositional instructions called chain-of-instructions (CoI), where the output of one instruction becomes an input for the next like a chain. Unlike the conventional practice of solving single instruction tasks, our proposed method encourages a model to solve each subtask step by step until the final answer is reached. CoI-tuning (i.e., fine-tuning with CoI instructions) improves the model's ability to handle instructions composed of multiple subtasks as well as unseen composite tasks such as multilingual summarization. Overall, our study find that simple CoI tuning of existing instruction data can provide consistent generalization to solve more complex, unseen, and longer chains of instructions.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 29 likes about this paper.