Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Local temperature measurement in molecular dynamics simulations with rigid constraints (2402.11171v2)

Published 17 Feb 2024 in cond-mat.stat-mech, cond-mat.soft, math-ph, math.MP, physics.chem-ph, and physics.class-ph

Abstract: Constraining molecules in simulations (such as with constant bond lengths and/or angles) reduces their degrees of freedom (DoF), which in turn affects temperature calculations in those simulations. When local temperatures are measured, e.g. from a set of atoms in a subvolume or from velocities in one Cartesian direction, the result can appear to unphysically violate equipartition of the kinetic energy if the local DoF are not correctly calculated. Here we determine how to correctly calculate local temperatures from arbitrary Cartesian component kinetic energies, accounting for general geometric constraints, by self-consistently evaluating the DoF of atoms subjected to those constraints. The method is validated on a variety of test systems, including systems subject to a temperature gradient and those confined between walls. It is also shown to provide a sensitive test for the breakdown of kinetic energy equipartition caused by the approximate nature of numerical integration or insufficient equilibration times. As a practical demonstration, we show that kinetic energy equipartition between C and H atoms connected by rigid bonds can be violated even at the commonly-used time step of 2 fs, and that this equipartition violation appears to usefully indicate configurational overheating.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. A. Baranyai, D. J. Evans, and P. J. Daivis, Isothermal shear-induced heat flow, Physical Review A 46, 7593–7600 (1992).
  2. B. D. Todd and D. J. Evans, Temperature profile for Poiseuille flow, Physical Review E 55, 2800–2807 (1997).
  3. S. Alosious, S. R. Tee, and D. J. Searles, Interfacial thermal transport and electrical performances of supercapacitors with graphene/carbon nanotube composite electrodes, The Journal of Physical Chemistry C 128, 2190–2204 (2024).
  4. H. Hu and Y. Sun, Effect of nanopatterns on Kapitza resistance at a water-gold interface during boiling: A molecular dynamics study, Journal of Applied Physics 112, 053508 (2012).
  5. R. C. Tolman, Statistical Mechanics with Applications to Physics and Chemistry, 32 (Chemical Catalog Company, Incorporated, 1927) Chap. 6.
  6. J. D. Olarte-Plata and F. Bresme, Thermal conductance of the water–gold interface: The impact of the treatment of surface polarization in non-equilibrium molecular simulations, The Journal of Chemical Physics 156, 204701 (2022).
  7. M. J. Uline, D. W. Siderius, and D. S. Corti, On the generalized equipartition theorem in molecular dynamics ensembles and the microcanonical thermodynamics of small systems, Journal of Chemical Physics 128, 124301 (2008).
  8. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, The missing term in effective pair potentials, The Journal of Physical Chemistry 91, 6269–6271 (1987).
  9. H. Matsubara, D. Surblys, and T. Ohara, Degrees of freedom of atoms in a rigid molecule for local temperature calculation in molecular dynamics simulation, Molecular Simulation 49, 1365–1372 (2023).
  10. D. N. Asthagiri and T. L. Beck, MD simulation of water using a rigid body description requires a small time step to ensure equipartition, Journal of Chemical Theory and Computation 20, 368–374 (2023).
  11. G. R. Kneller and K. Hinsen, Generalized Euler equations for linked rigid bodies, Physical Review E 50, 1559–1564 (1994).
  12. A. Jain, I.-H. Park, and N. Vaidehi, Equipartition principle for internal coordinate molecular dynamics, Journal of Chemical Theory and Computation 8, 2581–2587 (2012).
  13. R. C. Sinclair, Make-graphitics (2019).
  14. W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Physical Review A 31, 1695 (1985).
  15. W. Humphrey, A. Dalke, and K. Schulten, VMD – Visual Molecular Dynamics, Journal of Molecular Graphics 14, 33 (1996).
  16. J. Stone, An Efficient Library for Parallel Ray Tracing and Animation, Master’s thesis, Computer Science Department, University of Missouri-Rolla (1998).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.