Atom interferometer as a freely falling clock for time-dilation measurements (2402.11065v1)
Abstract: Light-pulse atom interferometers based on single-photon transitions are a promising tool for gravitational-wave detection in the mid-frequency band and the search for ultralight dark-matter fields. Here we present a novel measurement scheme that enables their use as freely falling clocks directly measuring relativistic time-dilation effects. The proposal is particularly timely because it can be implemented with no additional requirements in Fermilab's MAGIS-100 experiment or even in the 10-m prototypes that are expected to start operating very soon. This will allow the unprecedented measurement of gravitational time dilation in a local experiment with freely falling atoms, which is out of reach even for the best atomic-fountain clocks based on microwave transitions. The results are supported by a comprehensive treatment of relativistic effects in this kind of interferometers as well as a detailed analysis of the main systematic effects. Furthermore, the theoretical methods developed here constitute a valuable tool for modelling light-pulse atom interferometers based on single-photon transitions in general.
- J. F. Clauser, Ultra-high sensitivity accelerometers and gyroscopes using neutral atom matter-wave interferometry, Physica B+C 151, 262 (1988).
- C. J. Bordé, Atomic interferometry with internal state labelling, Phys. Lett. A 140, 10 (1989).
- O. Carnal and J. Mlynek, Young’s double-slit experiment with atoms: A simple atom interferometer, Phys. Rev. Lett. 66, 2689 (1991).
- M. Kasevich and S. Chu, Atomic interferometry using stimulated Raman transitions, Phys. Rev. Lett. 67, 181 (1991).
- A. Peters, K. Y. Chung, and S. Chu, Measurement of gravitational acceleration by dropping atoms, Nature 400, 849 (1999).
- A. Roura, Quantum probe of space-time curvature, Science 375, 142 (2022).
- N. Yu and M. Tinto, Gravitational wave detection with single-laser atom interferometers, General Relativity and Gravitation 43, 1943 (2011).
- J. M. Hogan and M. A. Kasevich, Atom-interferometric gravitational-wave detection using heterodyne laser links, Phys. Rev. A 94, 033632 (2016).
- MAGIS-100 at Fermilab, http://qis.fnal.gov/magis-100 .
- M.-S. Zhan et al., ZAIGA: Zhaoshan Long-baseline Atom Interferometer Gravitation Antenna, Int. J. Mod. Phys. D 29, 1940005 (2019).
- J. C. Hafele and R. E. Keating, Around-the-world atomic clocks: Observed relativistic time gains, Science 177, 168 (1972).
- A. Roura, Gravitational redshift in quantum-clock interferometry, Phys. Rev. X 10, 021014 (2020).
- N. Ashby, Falling atoms, arXiv:2111.08114 .
- C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973).
- E. A. Alden, K. R. Moore, and A. E. Leanhardt, Two-photon E1–M1 optical clock, Phys. Rev. A 90, 012523 (2014).
- A. Roura, W. Zeller, and W. P. Schleich, Overcoming loss of contrast in atom interferometry due to gravity gradients, New J. Phys. 16, 123012 (2014).
- A. Roura, Circumventing Heisenberg’s uncertainty principle in atom interferometry tests of the equivalence principle, Phys. Rev. Lett. 118, 160401 (2017).
- A. Peters, K. Y. Chung, and S. Chu, High-precision gravity measurements using atom interferometry, Metrologia 38, 25 (2001).
- S. Sinha and J. Samuel, Atom interferometry and the gravitational redshift, Class. Quantum Grav. 28, 145018 (2011).
- C. M. Will, The confrontation between general relativity and experiment, Living Rev. Relativity 17, 4 (2014).
- C. Antoine, Matter wave beam splitters in gravito-inertial and trapping potentials: generalized ttt scheme for atom interferometry, Applied Physics B 84, 585 (2006). Overstreet et al. [2021] C. Overstreet, P. Asenbaum, and M. A. Kasevich, Physically significant phase shifts in matter-wave interferometry, American Journal of Physics 89, 324 (2021). Dimopoulos et al. [2008] S. Dimopoulos, P. W. Graham, J. M. Hogan, and M. A. Kasevich, General relativistic effects in atom interferometry, Phys. Rev. D 78, 042003 (2008). Bott [2022] A. Bott, Single-photon Transitions in Atom Interferometry, Master’s thesis, Universität Ulm (2022), doi: 10.18725/OPARU-44115. Bott et al. [2022] A. Bott, F. Di Pumpo, E. Giese, and W. P. Schleich, Single-photon transitions in atom interferometry, DPG Spring Meeting, SAMOP (2022). Bott et al. [2023] A. Bott, F. Di Pumpo, and E. Giese, Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions, AVS Quantum Science 5, 044402 (2023). Bordé [2002] C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). C. Overstreet, P. Asenbaum, and M. A. Kasevich, Physically significant phase shifts in matter-wave interferometry, American Journal of Physics 89, 324 (2021). Dimopoulos et al. [2008] S. Dimopoulos, P. W. Graham, J. M. Hogan, and M. A. Kasevich, General relativistic effects in atom interferometry, Phys. Rev. D 78, 042003 (2008). Bott [2022] A. Bott, Single-photon Transitions in Atom Interferometry, Master’s thesis, Universität Ulm (2022), doi: 10.18725/OPARU-44115. Bott et al. [2022] A. Bott, F. Di Pumpo, E. Giese, and W. P. Schleich, Single-photon transitions in atom interferometry, DPG Spring Meeting, SAMOP (2022). Bott et al. [2023] A. Bott, F. Di Pumpo, and E. Giese, Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions, AVS Quantum Science 5, 044402 (2023). Bordé [2002] C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. Dimopoulos, P. W. Graham, J. M. Hogan, and M. A. Kasevich, General relativistic effects in atom interferometry, Phys. Rev. D 78, 042003 (2008). Bott [2022] A. Bott, Single-photon Transitions in Atom Interferometry, Master’s thesis, Universität Ulm (2022), doi: 10.18725/OPARU-44115. Bott et al. [2022] A. Bott, F. Di Pumpo, E. Giese, and W. P. Schleich, Single-photon transitions in atom interferometry, DPG Spring Meeting, SAMOP (2022). Bott et al. [2023] A. Bott, F. Di Pumpo, and E. Giese, Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions, AVS Quantum Science 5, 044402 (2023). Bordé [2002] C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). A. Bott, Single-photon Transitions in Atom Interferometry, Master’s thesis, Universität Ulm (2022), doi: 10.18725/OPARU-44115. Bott et al. [2022] A. Bott, F. Di Pumpo, E. Giese, and W. P. Schleich, Single-photon transitions in atom interferometry, DPG Spring Meeting, SAMOP (2022). Bott et al. [2023] A. Bott, F. Di Pumpo, and E. Giese, Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions, AVS Quantum Science 5, 044402 (2023). Bordé [2002] C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). A. Bott, F. Di Pumpo, E. Giese, and W. P. Schleich, Single-photon transitions in atom interferometry, DPG Spring Meeting, SAMOP (2022). Bott et al. [2023] A. Bott, F. Di Pumpo, and E. Giese, Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions, AVS Quantum Science 5, 044402 (2023). Bordé [2002] C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). A. Bott, F. Di Pumpo, and E. Giese, Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions, AVS Quantum Science 5, 044402 (2023). Bordé [2002] C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008).
- C. Overstreet, P. Asenbaum, and M. A. Kasevich, Physically significant phase shifts in matter-wave interferometry, American Journal of Physics 89, 324 (2021). Dimopoulos et al. [2008] S. Dimopoulos, P. W. Graham, J. M. Hogan, and M. A. Kasevich, General relativistic effects in atom interferometry, Phys. Rev. D 78, 042003 (2008). Bott [2022] A. Bott, Single-photon Transitions in Atom Interferometry, Master’s thesis, Universität Ulm (2022), doi: 10.18725/OPARU-44115. Bott et al. [2022] A. Bott, F. Di Pumpo, E. Giese, and W. P. Schleich, Single-photon transitions in atom interferometry, DPG Spring Meeting, SAMOP (2022). Bott et al. [2023] A. Bott, F. Di Pumpo, and E. Giese, Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions, AVS Quantum Science 5, 044402 (2023). Bordé [2002] C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. Dimopoulos, P. W. Graham, J. M. Hogan, and M. A. Kasevich, General relativistic effects in atom interferometry, Phys. Rev. D 78, 042003 (2008). Bott [2022] A. Bott, Single-photon Transitions in Atom Interferometry, Master’s thesis, Universität Ulm (2022), doi: 10.18725/OPARU-44115. Bott et al. [2022] A. Bott, F. Di Pumpo, E. Giese, and W. P. Schleich, Single-photon transitions in atom interferometry, DPG Spring Meeting, SAMOP (2022). Bott et al. [2023] A. Bott, F. Di Pumpo, and E. Giese, Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions, AVS Quantum Science 5, 044402 (2023). Bordé [2002] C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). A. Bott, Single-photon Transitions in Atom Interferometry, Master’s thesis, Universität Ulm (2022), doi: 10.18725/OPARU-44115. Bott et al. [2022] A. Bott, F. Di Pumpo, E. Giese, and W. P. Schleich, Single-photon transitions in atom interferometry, DPG Spring Meeting, SAMOP (2022). Bott et al. [2023] A. Bott, F. Di Pumpo, and E. Giese, Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions, AVS Quantum Science 5, 044402 (2023). Bordé [2002] C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). A. Bott, F. Di Pumpo, E. Giese, and W. P. Schleich, Single-photon transitions in atom interferometry, DPG Spring Meeting, SAMOP (2022). Bott et al. [2023] A. Bott, F. Di Pumpo, and E. Giese, Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions, AVS Quantum Science 5, 044402 (2023). Bordé [2002] C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). A. Bott, F. Di Pumpo, and E. Giese, Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions, AVS Quantum Science 5, 044402 (2023). Bordé [2002] C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008).
- S. Dimopoulos, P. W. Graham, J. M. Hogan, and M. A. Kasevich, General relativistic effects in atom interferometry, Phys. Rev. D 78, 042003 (2008). Bott [2022] A. Bott, Single-photon Transitions in Atom Interferometry, Master’s thesis, Universität Ulm (2022), doi: 10.18725/OPARU-44115. Bott et al. [2022] A. Bott, F. Di Pumpo, E. Giese, and W. P. Schleich, Single-photon transitions in atom interferometry, DPG Spring Meeting, SAMOP (2022). Bott et al. [2023] A. Bott, F. Di Pumpo, and E. Giese, Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions, AVS Quantum Science 5, 044402 (2023). Bordé [2002] C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). A. Bott, Single-photon Transitions in Atom Interferometry, Master’s thesis, Universität Ulm (2022), doi: 10.18725/OPARU-44115. Bott et al. [2022] A. Bott, F. Di Pumpo, E. Giese, and W. P. Schleich, Single-photon transitions in atom interferometry, DPG Spring Meeting, SAMOP (2022). Bott et al. [2023] A. Bott, F. Di Pumpo, and E. Giese, Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions, AVS Quantum Science 5, 044402 (2023). Bordé [2002] C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). A. Bott, F. Di Pumpo, E. Giese, and W. P. Schleich, Single-photon transitions in atom interferometry, DPG Spring Meeting, SAMOP (2022). Bott et al. [2023] A. Bott, F. Di Pumpo, and E. Giese, Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions, AVS Quantum Science 5, 044402 (2023). Bordé [2002] C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). A. Bott, F. Di Pumpo, and E. Giese, Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions, AVS Quantum Science 5, 044402 (2023). Bordé [2002] C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008).
- A. Bott, Single-photon Transitions in Atom Interferometry, Master’s thesis, Universität Ulm (2022), doi: 10.18725/OPARU-44115. Bott et al. [2022] A. Bott, F. Di Pumpo, E. Giese, and W. P. Schleich, Single-photon transitions in atom interferometry, DPG Spring Meeting, SAMOP (2022). Bott et al. [2023] A. Bott, F. Di Pumpo, and E. Giese, Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions, AVS Quantum Science 5, 044402 (2023). Bordé [2002] C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). A. Bott, F. Di Pumpo, E. Giese, and W. P. Schleich, Single-photon transitions in atom interferometry, DPG Spring Meeting, SAMOP (2022). Bott et al. [2023] A. Bott, F. Di Pumpo, and E. Giese, Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions, AVS Quantum Science 5, 044402 (2023). Bordé [2002] C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). A. Bott, F. Di Pumpo, and E. Giese, Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions, AVS Quantum Science 5, 044402 (2023). Bordé [2002] C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008).
- A. Bott, F. Di Pumpo, E. Giese, and W. P. Schleich, Single-photon transitions in atom interferometry, DPG Spring Meeting, SAMOP (2022). Bott et al. [2023] A. Bott, F. Di Pumpo, and E. Giese, Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions, AVS Quantum Science 5, 044402 (2023). Bordé [2002] C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). A. Bott, F. Di Pumpo, and E. Giese, Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions, AVS Quantum Science 5, 044402 (2023). Bordé [2002] C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008).
- A. Bott, F. Di Pumpo, and E. Giese, Atomic diffraction from single-photon transitions in gravity and Standard-Model extensions, AVS Quantum Science 5, 044402 (2023). Bordé [2002] C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008).
- C. J. Bordé, Atomic clocks and inertial sensors, Metrologia 39, 435 (2002). Antoine and Bordé [2003] C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008).
- C. Antoine and C. J. Bordé, Quantum theory of atomic clocks and gravito-inertial sensors: an update, J. Opt. B: Quantum and Semiclass. Opt. 5, S199 (2003). Damour [2012] T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008).
- T. Damour, Theoretical aspects of the equivalence principle, Class. Quantum Grav. 29, 184001 (2012). Damour and Donoghue [2010] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008).
- T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82, 084033 (2010). Nordtvedt [1975] K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008).
- K. Nordtvedt, Quantitative relationship between clock gravitational “red-shift” violations and nonuniversality of free-fall rates in nonmetric theories of gravity, Phys. Rev. D 11, 245 (1975). Wolf and Blanchet [2016] P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). P. Wolf and L. Blanchet, Analysis of sun/moon gravitational redshift tests with the STE-QUEST space mission, Class. Quantum Grav. 33, 035012 (2016). Giulini [2012] D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008).
- D. Giulini, Equivalence principle, quantum mechanics, and atom-interferometric tests, in Proceedings, Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework: Regensburg, Germany, September 28-October 1, 2010 (2012) pp. 345–370, arXiv:1105.0749 [gr-qc] . [89] Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008).
- Y.-Y. Xu, X.-B. Deng, X.-C. Duan, L.-S. Cao, M.-K. Zhou, C.-G. Shao, and Z.-K. Hu, de-broglie wavelength enhanced weak equivalence principle test for atoms in different hyperfine states, arXiv:2210.08533 . Zheng et al. [2022] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008).
- X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S. Kolkowitz, Differential clock comparisons with a multiplexed optical lattice clock, Nature 602, 425 (2022). Falke et al. [2011] S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008).
- S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, The 87sr optical frequency standard at ptb, Metrologia 48, 399 (2011). Wodey et al. [2020] E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008).
- E. Wodey, D. Tell, E. M. Rasel, D. Schlippert, R. Baur, U. Kissling, B. Kölliker, M. Lorenz, M. Marrer, U. Schläpfer, M. Widmer, C. Ufrecht, S. Stuiber, and P. Fierlinger, A scalable high-performance magnetic shield for very long baseline atom interferometry, Review of Scientific Instruments 91, 035117 (2020). Porsev et al. [2008] S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008). S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008).
- S. G. Porsev, A. D. Ludlow, M. M. Boyd, and J. Ye, Determination of sr properties for a high-accuracy optical clock, Phys. Rev. A 78, 032508 (2008).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.