Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

"Understanding AI": Semantic Grounding in Large Language Models (2402.10992v1)

Published 16 Feb 2024 in cs.CL and cs.AI

Abstract: Do LLMs understand the meaning of the texts they generate? Do they possess a semantic grounding? And how could we understand whether and what they understand? I start the paper with the observation that we have recently witnessed a generative turn in AI, since generative models, including LLMs, are key for self-supervised learning. To assess the question of semantic grounding, I distinguish and discuss five methodological ways. The most promising way is to apply core assumptions of theories of meaning in philosophy of mind and language to LLMs. Grounding proves to be a gradual affair with a three-dimensional distinction between functional, social and causal grounding. LLMs show basic evidence in all three dimensions. A strong argument is that LLMs develop world models. Hence, LLMs are neither stochastic parrots nor semantic zombies, but already understand the language they generate, at least in an elementary sense.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Holger Lyre (4 papers)
Citations (1)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets