Papers
Topics
Authors
Recent
2000 character limit reached

Continuum limit of the Green function in scaled affine $\varphi^4_4$ quantum Euclidean covariant relativistic field theory (2402.10903v2)

Published 29 Dec 2023 in hep-th, hep-lat, quant-ph, gr-qc, and physics.comp-ph

Abstract: We prove through path integral Monte Carlo computer experiments that the affine quantization of the $\varphi_44$ scaled Euclidean covariant relativistic scalar field theory is a valid quantum field theory with a well defined continuum limit of the one- and two-point-function. Affine quantization leads to a completely satisfactory quantization of field theories using situations that involve scaled behavior leading to an unexpected, $\hbar2/\varphi2$ which arises only in the quantum aspects.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. P. A. M. Dirac, The Principles of Quantum Mechanics (Claredon Press, Oxford, 1958) in a footnote on page 114.
  2. B. Freedman, P. Smolensky, and D. Weingarten, Monte Carlo Evaluation of the Continuum Limit of ϕ44superscriptsubscriptitalic-ϕ44\phi_{4}^{4}italic_ϕ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT and ϕ34superscriptsubscriptitalic-ϕ34\phi_{3}^{4}italic_ϕ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT, Physics Letters 113B, 481 (1982).
  3. M. Aizenman, Proof of the Triviality of ϕd4subscriptsuperscriptitalic-ϕ4𝑑\phi^{4}_{d}italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT Field Theory and Some Mean-Field Features of Ising Models for d>4𝑑4d>4italic_d > 4, Phys. Rev. Lett. 47, 886(E) (1981).
  4. J. Fröhlich, On the Triviality of λ⁢ϕd4𝜆superscriptsubscriptitalic-ϕ𝑑4\lambda\phi_{d}^{4}italic_λ italic_ϕ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT Theories and the Approach to the Critical Point in d≥4𝑑4d\geq 4italic_d ≥ 4 Dimensions, Nuclear Physics B 200, 281 (1982).
  5. J. Siefert and U. Wolff, Triviality of φ4superscript𝜑4\varphi^{4}italic_φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT theory in a finite volume scheme adapted to the broken phase, Physics Letters B 733, 11 (2014).
  6. U. Wolff, Triviality of four dimensional ϕ4superscriptitalic-ϕ4\phi^{4}italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT theory on the lattice, Scholarpedia 9, 7367 (2014).
  7. J. R. Klauder, A Modern Approach to Functional Integration (Springer, 2010).
  8. J. R. Klauder, Beyond Conventional Quantization (Cambridge University Press, 2000) chap. 5.
  9. J. R. Klauder, The Benefits of Affine Quantization, Journal of High Energy Physics, Gravitation and Cosmology 6, 175 (2020a).
  10. J. R. Klauder, Using Affine Quantization to Analyze Non-renormalizable Scalar Fields and the Quantization of Einstein’s Gravity,   (2020b), arXiv:2006.09156.
  11. J. R. Klauder, An Ultralocal Classical and Quantum Gravity Theory, Journal of High Energy Physics, Gravitation and Cosmology 6, 656 (2020c).
  12. R. Fantoni and J. R. Klauder, Affine quantization of (φ4)4subscriptsuperscript𝜑44(\varphi^{4})_{4}( italic_φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT succeeds while canonical quantization fails, Phys. Rev. D 103, 076013 (2021a).
  13. R. Fantoni, Monte carlo evaluation of the continuum limit of (ϕ12)3subscriptsuperscriptitalic-ϕ123(\phi^{12})_{3}( italic_ϕ start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT, J. Stat. Mech. , 083102 (2021).
  14. R. Fantoni and J. R. Klauder, Monte carlo evaluation of the continuum limit of the two-point function of the euclidean free real scalar field subject to affine quantization, J. Stat. Phys. 184, 28 (2021b).
  15. R. Fantoni and J. R. Klauder, Monte carlo evaluation of the continuum limit of the two-point function of two euclidean higgs real scalar fields subject to affine quantization, Phys. Rev. D 104, 054514 (2021c).
  16. R. Fantoni and J. R. Klauder, Eliminating nonrenormalizability helps prove scaled affine quantization of φ44subscriptsuperscript𝜑44\varphi^{4}_{4}italic_φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT is nontrivial, Int. J. Mod. Phys. A 37, 2250029 (2022a).
  17. R. Fantoni and J. R. Klauder, Kinetic factors in affine quantization and their role in field theory monte carlo, Int. J. Mod. Phys. A 37, 2250094 (2022b).
  18. R. Fantoni and J. R. Klauder, Scaled affine quantization of φ44subscriptsuperscript𝜑44\varphi^{4}_{4}italic_φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT in the low temperature limit, Eur. Phys. J. C 82, 843 (2022c).
  19. R. Fantoni and J. R. Klauder, Scaled affine quantization of ultralocal φ24subscriptsuperscript𝜑42\varphi^{4}_{2}italic_φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT a comparative path integral monte carlo study with scaled canonical quantization, Phys. Rev. D 106, 114508 (2022d).
  20. R. Fantoni, Scaled affine quantization of φ312subscriptsuperscript𝜑123\varphi^{12}_{3}italic_φ start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT is nontrivial, Mod. Phys. Lett. A , 2350167 (2023).
  21. J. R. Klauder and R. Fantoni, A modest redirection of quantum field theory solves all current problems, J. Stat. Phys. (submitted)  (2023b), arXiv:2308.13475.
  22. D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).
  23. M. H. Kalos and P. A. Whitlock, Monte Carlo Methods (Wiley-Vch Verlag GmbH & Co., Germany, 2008).
  24. R. Fantoni, Localization of acoustic polarons at low temperatures: A path integral monte carlo approach, Phys. Rev. B 86, 144304 (2012).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: