Asymptotic isospectrality of Schrödinger operators on periodic graphs (2402.10780v2)
Abstract: We consider discrete Schr\"odinger operators with periodic potentials on periodic graphs. Their spectra consist of a finite number of bands. We perturb a periodic graph by adding edges in a periodic way (without changing the vertex set) and show that if the added edges are long enough, then the perturbed graph is asymptotically isospectral to some periodic graph of a higher dimension but without long edges. We also obtain a criterion for the perturbed graph to be not only asymptotically isospectral but just isospectral to this higher dimensional periodic graph. One of the simplest examples of such asymptotically isospectral periodic graphs is the square lattice perturbed by long edges and the cubic lattice. We also get asymptotics of the endpoints of the spectral bands for the Schr\"odinger operator on the perturbed graph as the length of the added edges tends to infinity.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.