Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Condensed Transition Graph Framework for Zero-shot Link Prediction with Large Language Models

Published 16 Feb 2024 in cs.CL | (2402.10779v2)

Abstract: Zero-shot link prediction (ZSLP) on knowledge graphs aims at automatically identifying relations between given entities. Existing methods primarily employ auxiliary information to predict tail entity given head entity and its relation, yet face challenges due to the occasional unavailability of such detailed information and the inherent simplicity of predicting tail entities based on semantic similarities. Even though LLMs offer a promising solution to predict unobserved relations between the head and tail entity in a zero-shot manner, their performance is still restricted due to the inability to leverage all the (exponentially many) paths' information between two entities, which are critical in collectively indicating their relation types. To address this, in this work, we introduce a Condensed Transition Graph Framework for Zero-Shot Link Prediction (CTLP), which encodes all the paths' information in linear time complexity to predict unseen relations between entities, attaining both efficiency and information preservation. Specifically, we design a condensed transition graph encoder with theoretical guarantees on its coverage, expressiveness, and efficiency. It is learned by a transition graph contrastive learning strategy. Subsequently, we design a soft instruction tuning to learn and map the all-path embedding to the input of LLMs. Experimental results show that our proposed CTLP method achieves state-of-the-art performance on three standard ZSLP datasets

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.