Papers
Topics
Authors
Recent
2000 character limit reached

Studying the Impact of Quantum-Specific Hyperparameters on Hybrid Quantum-Classical Neural Networks

Published 16 Feb 2024 in quant-ph | (2402.10605v2)

Abstract: In current noisy intermediate-scale quantum devices, hybrid quantum-classical neural networks (HQNNs) represent a promising solution that combines the strengths of classical machine learning with quantum computing capabilities. Compared to classical deep neural networks (DNNs), HQNNs present an additional set of hyperparameters, which are specific to quantum circuits. These quantum-specific hyperparameters, such as quantum circuit depth, number of qubits, type of entanglement, number of shots, and measurement observables, can significantly impact the behavior of the HQNNs and their capabilities to learn the given task. In this paper, we investigate the impact of these variations on different HQNN models for image classification tasks, implemented on the PennyLane framework. We aim to uncover intuitive and counter-intuitive learning patterns of HQNN models within granular levels of controlled quantum perturbations, to form a sound basis for their correlation to accuracy and training time. The outcome of our study opens new avenues for designing efficient HQNN algorithms and builds a foundational base for comprehending and identifying tunable hyperparameters of HQNN models that can lead to useful design implementation and usage.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.