Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Quantum effects in gravity beyond the Newton potential from a delocalised quantum source (2402.10288v2)

Published 15 Feb 2024 in quant-ph and gr-qc

Abstract: Recent progress in table-top experiments offers the opportunity to show for the first time that gravity is not compatible with a classical description. In all current experimental proposals, such as the generation of gravitationally induced entanglement between two quantum sources of gravity, gravitational effects can be explained with the Newton potential, namely in a regime that is consistent with the weak-field limit of general relativity and does not probe the field nature of gravity. Hence, the Newtonian origin of the effects is a limitation to the conclusions on the nature of gravity that can be drawn from these experiments. Here, we identify two effects that overcome this limitation: they cannot be reproduced using the Newton potential and are independent of graviton emission. First, we show that the interaction between two generic quantum sources of gravity, e.g. in wide Gaussian states, cannot be reproduced with the Newton potential nor with a known classical theory or gravity. Hence, observing the form of this interaction would require either a modification to classical gravity or its quantum description. Second, we show that the quantum commutator between the gravitational field and its canonically conjugate momentum appears as an additional term in the relative phase of a generic quantum source interacting with a test particle. Observing this term in the phase would be a test of the gravitational field as a quantum mediator. Identifying stronger quantum aspects of gravity than those reproducible with the Newton potential is crucial to prove the nonclassicality of the gravitational field and to plan a new generation of experiments testing quantum aspects of gravity in a broader sense than what proposed so far.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. C. M. DeWitt and D. Rickles, The role of gravitation in physics: Report from the 1957 Chapel Hill Conference, Vol. 5 (epubli, 2011).
  2. H. D. Zeh, The European Physical Journal H 36, 63 (2011), arXiv:0804.3348 [quant-ph] .
  3. K. Eppley and E. Hannah, Found. Phys. 7, 51 (1977).
  4. D. N. Page and C. D. Geilker, Phys. Rev. Lett. 47, 979 (1981).
  5. L. Ford, Ann. Phys. 144, 238 (1982).
  6. R. Penrose, Gen. Rel. Grav. 28, 581 (1996).
  7. N. H. Lindner and A. Peres, Phys. Rev. A 71, 024101 (2005), arXiv:gr-qc/0410030 .
  8. D. Kafri and J. Taylor,   (2013), arXiv:1311.4558 [quant-ph] .
  9. C. Marletto and V. Vedral, Phys. Rev. Lett. 119, 240402 (2017a), arXiv:1707.06036 [quant-ph] .
  10. C. Anastopoulos and B.-L. Hu, Class. Quant. Grav. 32, 165022 (2015), arXiv:1504.03103 [quant-ph] .
  11. C. Anastopoulos and B.-L. Hu, Class. Quant. Grav. 37, 235012 (2020), arXiv:2007.06446 [quant-ph] .
  12. M. J. Hall and M. Reginatto, J. Phys. A 51, 085303 (2018), arXiv:1707.07974 [quant-ph] .
  13. M. Christodoulou and C. Rovelli, Phys. Lett. B 792, 64 (2019), arXiv:1808.05842 [quant-ph] .
  14. D. Carney, Phys. Rev. D 105, 024029 (2022), arXiv:2108.06320 [quant-ph] .
  15. A. Kent and D. Pitalúa-García, Phys. Rev. D 104, 126030 (2021), arXiv:2109.02616 [quant-ph] .
  16. E. Martín-Martínez and T. R. Perche,   (2022), arXiv:2208.09489 [quant-ph] .
  17. J. Yant and M. Blencowe, Phys. Rev. D 107, 106018 (2023), arXiv:2302.05463 [quant-ph] .
  18. J. F. Clauser, Phys. Rev. D 9, 853 (1974).
  19. C. Marletto and V. Vedral, npj Quantum Inf. 3, 29 (2017b), arXiv:1703.04325 [quant-ph] .
  20. C. Marletto and V. Vedral, Phys. Rev. D 102, 086012 (2020), arXiv:2003.07974 [quant-ph] .
  21. J. F. Donoghue, Phys. Rev. D 50, 3874 (1994), arXiv:9405057 [gr-qc] .
  22. M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory (Addison-Wesley, Reading, USA, 1995).
  23. J. S. Schwinger, Phys. Rev. Lett. 3, 296 (1959).
  24. S. Deser and D. Boulware, J. Math. Phys. 8, 1468 (1967).
  25. J. Oppenheim, Phys. Rev. X 13, 041040 (2023), arXiv:1811.03116 [hep-th] .
  26. D. Giulini and A. Grossardt, New J. Phys. 16, 075005 (2014), arXiv:1404.0624 [gr-qc] .
  27. W. G. Unruh, in Workshop on Relativistic Quantum Measurement and Decoherence (1999) pp. 125–140.
  28. Q. Xu and M. P. Blencowe, Phys. Rev. Lett. 129, 203604 (2022), arXiv:2110.13278 [quant-ph] .
  29. B. Hatfield, Quantum field theory of point particles and strings (CRC Press, 1992).
  30. S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity (Cambridge University Press, 2019).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 11 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com