Papers
Topics
Authors
Recent
2000 character limit reached

Workflow Optimization for Parallel Split Learning

Published 1 Feb 2024 in cs.DC, cs.LG, and cs.NI | (2402.10092v1)

Abstract: Split learning (SL) has been recently proposed as a way to enable resource-constrained devices to train multi-parameter neural networks (NNs) and participate in federated learning (FL). In a nutshell, SL splits the NN model into parts, and allows clients (devices) to offload the largest part as a processing task to a computationally powerful helper. In parallel SL, multiple helpers can process model parts of one or more clients, thus, considerably reducing the maximum training time over all clients (makespan). In this paper, we focus on orchestrating the workflow of this operation, which is critical in highly heterogeneous systems, as our experiments show. In particular, we formulate the joint problem of client-helper assignments and scheduling decisions with the goal of minimizing the training makespan, and we prove that it is NP-hard. We propose a solution method based on the decomposition of the problem by leveraging its inherent symmetry, and a second one that is fully scalable. A wealth of numerical evaluations using our testbed's measurements allow us to build a solution strategy comprising these methods. Moreover, we show that this strategy finds a near-optimal solution, and achieves a shorter makespan than the baseline scheme by up to 52.3%.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.