Papers
Topics
Authors
Recent
2000 character limit reached

More on graph pebbling number

Published 15 Feb 2024 in math.CO | (2402.10017v1)

Abstract: Let $G=(V,E)$ be a simple graph. A function $\phi:V\rightarrow \mathbb{N}\cup {0}$ is called a configuration of pebbles on the vertices of $G$ and the quantity $\sum_{u\in V}\phi(u)$ is called the size of $\phi$ which is just the total number of pebbles assigned to vertices. A pebbling step from a vertex $u$ to one of its neighbors $v$ reduces $\phi(u)$ by two and increases $\phi(v)$ by one. Given a specified target vertex $r$ we say that $\phi$ is $t$-fold $r$-solvable, if some sequence of pebbling steps places at least $t$ pebbles on $r$. Conversely, if no such steps exist, then $\phi$ is $r$-unsolvable. The minimum positive integer $m$ such that every configuration of size $m$ on the vertices of $G$ is $t$-fold $r$-solvable is denoted by $\pi_t(G,r)$. The $t$-fold pebbling number of $G$ is defined to be $\pi_t(G)= max_{r\in V(G)}\pi_t(G,r)$. When $t=1$, we simply write $\pi(G)$, which is the pebbling number of $G$. In this note, we study the pebbling number for some specific graphs. Also we investigate the pebbling number of corona and neighbourhood corona of two graphs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.