Gauge-Independent Metric Reconstruction of Perturbations of Vacuum Spherically-Symmetric Spacetimes (2402.10004v1)
Abstract: Perturbation theory of vacuum spherically-symmetric spacetimes (including the cosmological constant) has greatly contributed to the understanding of black holes, relativistic compact stars and even inhomogeneous cosmological models. The perturbative equations can be decoupled in terms of (gauge-invariant) master functions satisfying $1+1$ wave equations. In this work, building on previous work on the structure of the space of master functions and equations, we study the reconstruction of the metric perturbations in terms of the master functions. To that end, we consider the general situation in which the perturbations are driven by an arbitrary energy-momentum tensor. Then, we perform the metric reconstruction in a completely general perturbative gauge. In doing so, we investigate the role of Darboux transformations and Darboux covariance, responsible for the isospectrality between odd and even parity in the absence of matter sources and also of the physical equivalence between the descriptions based on all the possible master equations. We also show that the metric reconstruction can be carried out in terms of any of the possible master functions and that the expressions admit an explicitly covariant form.
- B. P. Abbott et al. (LIGO Scientific, Virgo), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016a), arXiv:1602.03837 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Phys. Rev. X 9, 031040 (2019), arXiv:1811.12907 [astro-ph.HE] .
- R. Abbott et al. (LIGO Scientific, VIRGO), GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run, Phys. Rev. D 109, 022001 (2024), arXiv:2108.01045 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Properties of the Binary Black Hole Merger GW150914, Phys. Rev. Lett. 116, 241102 (2016c), arXiv:1602.03840 [gr-qc] .
- B. Sathyaprakash et al., Scientific Objectives of Einstein Telescope, Class. Quant. Grav. 29, 124013 (2012), [Erratum: Class.Quant.Grav. 30, 079501 (2013)], arXiv:1206.0331 [gr-qc] .
- P. Amaro-Seoane et al. (LISA), Laser Interferometer Space Antenna, (2017), arXiv:1702.00786 [astro-ph.IM] .
- E. Barausse et al., Prospects for Fundamental Physics with LISA, Gen. Rel. Grav. 52, 81 (2020), arXiv:2001.09793 [gr-qc] .
- K. G. Arun et al. (LISA), New horizons for fundamental physics with LISA, Living Rev. Rel. 25, 4 (2022), arXiv:2205.01597 [gr-qc] .
- M. Colpi et al., LISA Definition Study Report, (2024), arXiv:2402.07571 [astro-ph.CO] .
- N. Afshordi et al. (LISA Consortium Waveform Working Group), Waveform Modelling for the Laser Interferometer Space Antenna, (2023), arXiv:2311.01300 [gr-qc] .
- C. W. Misner, K. Thorne, and J. A. Wheeler, Gravitation (W. H. Freeman & Co., San Francisco, 1973).
- U. H. Gerlach and U. K. Sengupta, Gauge invariant perturbations on most general spherically symmetric space-times, Phys. Rev. D 19, 2268 (1979).
- O. Sarbach and M. Tiglio, Gauge invariant perturbations of Schwarzschild black holes in horizon-penetrating coordinates, Phys. Rev. D 64, 084016 (2001), gr-qc/0104061 .
- C. A. Clarkson and R. K. Barrett, Covariant perturbations of Schwarzschild black holes, Class. Quant. Grav. 20, 3855 (2003), arXiv:gr-qc/0209051 .
- S. Mukohyama, Gauge invariant gravitational perturbations of maximally symmetric space-times, Phys. Rev. D 62, 084015 (2000), arXiv:hep-th/0004067 .
- H. Kodama and A. Ishibashi, A Master equation for gravitational perturbations of maximally symmetric black holes in higher dimensions, Prog. Theor. Phys. 110, 701 (2003), arXiv:hep-th/0305147 [hep-th] .
- H.-P. Nollert, Quasinormal modes: the characteristic ‘sound’ of black holes and neutron stars, Class. Quantum Grav. 16, 159 (1999).
- K. D. Kokkotas and B. G. Schmidt, Quasinormal modes of stars and black holes, Living Rev. Rel. 2, 2 (1999), arXiv:gr-qc/9909058 .
- N. Andersson and K. D. Kokkotas, The r-mode instability in rotating neutron stars, Int. J. Mod. Phys. D 10, 381 (2001), arXiv:gr-qc/0010102 .
- K. D. Kokkotas and B. F. Schutz, W-modes: A New family of normal modes of pulsating relativistic stars, Mon. Not. Roy. Astron. Soc. 255, 119 (1992).
- M. Sasaki and H. Tagoshi, Analytic black hole perturbation approach to gravitational radiation, Living Rev. Rel. 6, 6 (2003), arXiv:gr-qc/0306120 .
- V. Ferrari and L. Gualtieri, Quasi-Normal Modes and Gravitational Wave Astronomy, Gen. Rel. Grav. 40, 945 (2008), arXiv:0709.0657 [gr-qc] .
- R. Brito, V. Cardoso, and P. Pani, Superradiance: New Frontiers in Black Hole Physics, Vol. 906 (Springer, 2015) arXiv:1501.06570 [gr-qc] .
- L. Barack et al., Black holes, gravitational waves and fundamental physics: a roadmap, Class. Quant. Grav. 36, 143001 (2019), arXiv:1806.05195 [gr-qc] .
- P. Amaro-Seoane, Relativistic dynamics and extreme mass ratio inspirals, Living Rev. Rel. 21, 4 (2018), arXiv:1205.5240 [astro-ph.CO] .
- P. Amaro-Seoane et al., Astrophysics with the Laser Interferometer Space Antenna, (2022), arXiv:2203.06016 [gr-qc] .
- A. Cárdenas-Avendaño and C. F. Sopuerta, Testing gravity with Extreme-Mass-Ratio Inspirals, (2024), arXiv:2401.08085 [gr-qc] .
- E. Poisson, A. Pound, and I. Vega, The Motion of point particles in curved spacetime, Living Rev. Rel. 14, 7 (2011), arXiv:1102.0529 [gr-qc] .
- L. Barack, Gravitational self force in extreme mass-ratio inspirals, Class. Quant. Grav. 26, 213001 (2009), arXiv:0908.1664 [gr-qc] .
- L. Barack and A. Pound, Self-force and radiation reaction in general relativity, Rept. Prog. Phys. 82, 016904 (2019), arXiv:1805.10385 [gr-qc] .
- A. Pound and B. Wardell, Black hole perturbation theory and gravitational self-force 10.1007/978-981-15-4702-7_38-1 (2021), arXiv:2101.04592 [gr-qc] .
- T. Regge and J. A. Wheeler, Stability of a Schwarzschild singularity, Phys. Rev. 108, 1063 (1957).
- K. Schwarzschild, On the gravitational field of a mass point according to Einstein’s theory, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1916, 189 (1916), arXiv:physics/9905030 [physics] .
- F. J. Zerilli, Effective potential for even parity Regge-Wheeler gravitational perturbation equations, Phys. Rev. Lett. 24, 737 (1970a).
- F. J. Zerilli, Gravitational Field of a Particle Falling in a Schwarzschild Geometry Analyzed in Tensor Harmonics, Phys. Rev. D 2, 2141 (1970b).
- V. Moncrief, Gravitational perturbations of spherically symmetric systems. I. The exterior problem, Ann. Phys. (N.Y.) 88, 323 (1974).
- C. Vishveshwara, Stability of the Schwarzschild metric, Phys. Rev. D 1, 2870 (1970a).
- C. Vishveshwara, Scattering of Gravitational Radiation by a Schwarzschild Black-hole, Nature 227, 936 (1970b).
- R. P. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett. 11, 237 (1963).
- S. A. Teukolsky, Rotating Black Holes: Separable Wave Equations for Gravitational and Electromagnetic Perturbations, Phys. Rev. Lett. 29, 1114 (1972).
- S. A. Teukolsky, Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations, Astrophys. J. 185, 635 (1973).
- E. Newman and R. Penrose, An Approach to gravitational radiation by a method of spin coefficients, J. Math. Phys. 3, 566 (1962).
- J. E. Thompson, B. Wardell, and B. F. Whiting, Gravitational Self-Force Regularization in the Regge-Wheeler and Easy Gauges, Phys. Rev. D 99, 124046 (2019), arXiv:1811.04432 [gr-qc] .
- S. Hopper and C. R. Evans, Gravitational perturbations and metric reconstruction: Method of extended homogeneous solutions applied to eccentric orbits on a Schwarzschild black hole, Phys. Rev. D 82, 084010 (2010), arXiv:1006.4907 [gr-qc] .
- D. Brizuela, J. M. Martin-Garcia, and M. Tiglio, A Complete gauge-invariant formalism for arbitrary second-order perturbations of a Schwarzschild black hole, Phys. Rev. D 80, 024021 (2009), arXiv:0903.1134 [gr-qc] .
- K. Martel, Gravitational waveforms from a point particle orbiting a Schwarzschild black hole, Phys. Rev. D 69, 044025 (2004), gr-qc/0311017 .
- M. Lenzi and C. F. Sopuerta, Master functions and equations for perturbations of vacuum spherically symmetric spacetimes, Phys. Rev. D 104, 084053 (2021a), arXiv:2108.08668 [gr-qc] .
- M. Lenzi and C. F. Sopuerta, Darboux covariance: A hidden symmetry of perturbed Schwarzschild black holes, Phys. Rev. D 104, 124068 (2021b), arXiv:2109.00503 [gr-qc] .
- K. Glampedakis, A. D. Johnson, and D. Kennefick, Darboux transformation in black hole perturbation theory, Phys. Rev. D 96, 024036 (2017), arXiv:1702.06459 [gr-qc] .
- S. Chandrasekhar, On One-Dimensional Potential Barriers Having Equal Reflexion and Transmission Coefficients, Proc. Roy. Soc. Lond. A 369, 425 (1980).
- S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford University Press, New York, 1992).
- R. M. Miura, The Korteweg–de Vries Equation: A Survey of Results, SIAM Review 18, 412 (1976), https://doi.org/10.1137/1018076 .
- R. M. Miura, C. S. Gardner, and M. D. Kruskal, Korteweg-de Vries Equation and Generalizations. II. Existence of Conservation Laws and Constants of Motion, J. Math. Phys. 9, 1204 (1968).
- V. E. Zakharov and L. D. Faddeev, Korteweg-de Vries equation: A completely integrable Hamiltonian system, Functional Analysis and Its Applications 5, 280 (1971).
- P. D. Lax, Integrals of Nonlinear Equations of Evolution and Solitary Waves, Commun. Pure Appl. Math. 21, 467 (1968).
- M. Lenzi and C. F. Sopuerta, Black Hole Greybody Factors from Korteweg-de Vries Integrals: Theory, (2022), arXiv:2212.03732 [gr-qc] .
- M. Lenzi and C. F. Sopuerta, Black Hole Greybody Factors from Korteweg-de Vries Integrals: Computation, (2023), arXiv:2301.01096 [gr-qc] .
- D. Brizuela and J. M. Martin-Garcia, Hamiltonian theory for the axial perturbations of a dynamical spherical background, Class. Quant. Grav. 26, 015003 (2009), arXiv:0810.4786 [gr-qc] .
- R. P. Bernar, L. C. B. Crispino, and A. Higuchi, Gravitational waves emitted by a particle rotating around a Schwarzschild black hole: A semiclassical approach, Phys. Rev. D 95, 064042 (2017), arXiv:1703.10648 [gr-qc] .
- R. P. Bernar, L. C. B. Crispino, and A. Higuchi, Gibbons-Hawking radiation of gravitons in the Poincaré and static patches of de Sitter spacetime, Phys. Rev. D 97, 085005 (2018), arXiv:1803.01204 [gr-qc] .
- J. M. Stewart and M. Walker, Perturbations of space-times in general relativity, Royal Society of London Proceedings Series A 341, 49 (1974).
- R. Wald, General Relativity (The University of Chicago Press, Chicago, 1984).
- M. Bruni, L. Gualtieri, and C. F. Sopuerta, Two parameter nonlinear space-time perturbations: Gauge transformations and gauge invariance, Class. Quant. Grav. 20, 535 (2003), arXiv:gr-qc/0207105 .
- C. F. Sopuerta, M. Bruni, and L. Gualtieri, Nonlinear N-parameter space-time perturbations: Gauge transformations, Phys. Rev. D 70, 064002 (2004), arXiv:gr-qc/0306027 .
- R. M. Wald, Black hole in a uniform magnetic field, Phys. Rev. D 10, 1680 (1974).
- C. T. Cunningham, R. H. Price, and V. Moncrief, Radiation from collapsing relativistic stars. I - Linearized odd-parity radiation, Astrophys. J. 224, 643 (1978).
- C. T. Cunningham, R. H. Price, and V. Moncrief, Radiation from collapsing relativistic stars. II. Linearized even parity radiation, Astrophys. J. 230, 870 (1979).
- C. T. Cunningham, R. H. Price, and V. Moncrief, Radiation from collapsing relativistic stars. III - Second order perturbations of collapse with rotation, Astrophys. J. 236, 674 (1980).
- S. Jhingan and T. Tanaka, Improvement on the metric reconstruction scheme in Regge-Wheeler-Zerilli formalism, Phys. Rev. D 67, 104018 (2003), gr-qc/0211060 .
- K. Martel and E. Poisson, Gravitational perturbations of the Schwarzschild spacetime: A practical covariant and gauge-invariant formalism, Phys. Rev. D 71, 104003 (2005), gr-qc/0502028 .
- C. O. Lousto and R. H. Price, Head-on collisions of black holes: The Particle limit, Phys. Rev. D 55, 2124 (1997), arXiv:gr-qc/9609012 .
- R. H. Price and J. Pullin, Colliding black holes: The Close limit, Phys. Rev. Lett. 72, 3297 (1994), arXiv:gr-qc/9402039 .
- J. Pullin, The Close limit of colliding black holes: An Update, Prog. Theor. Phys. Suppl. 136, 107 (1999), arXiv:gr-qc/9909021 .
- S. Hopper, Unbound motion on a Schwarzschild background: Practical approaches to frequency domain computations, Phys. Rev. D 97, 064007 (2018), arXiv:1706.05455 [gr-qc] .
- G. Darboux, Leçons sur la théorie générale des surfaces et les application géométriques du calcul infinitésimal. Deuxième partie (Gauthier Villars et fils, Paris, 1889).
- G. Darboux, On a proposition relative to linear equations, C.R. Acad. Sci. Paris 94, 1456 (1882), arXiv:physics/9908003 [physics.hist-ph] .
- L. É. Gendenshteïn, Derivation of exact spectra of the Schrödinger equation by means of supersymmetry, Soviet Journal of Experimental and Theoretical Physics Letters 38, 356 (1983).
- J. O. Organista, M. Nowakowski, and H. C. Rosu, Shape invariance through Crum transformation, Journal of Mathematical Physics 47, 122104 (2006).
- S. Grozdanov and M. Vrbica, Pole-skipping of gravitational waves in the backgrounds of four-dimensional massive black holes, (2023), arXiv:2303.15921 [hep-th] .
- S. Grozdanov, T. Lemut, and J. F. Pedraza, Reconstruction of the quasinormal spectrum from pole skipping, Phys. Rev. D 108, L101901 (2023), arXiv:2308.01371 [hep-th] .
- S. Datta and S. Bose, Quasi-normal Modes of Static Spherically Symmetric Black Holes in f(R)𝑓𝑅f(R)italic_f ( italic_R ) Theory, Eur. Phys. J. C 80, 14 (2020), arXiv:1904.01519 [gr-qc] .
- C.-Y. Chen, M. Bouhmadi-López, and P. Chen, Lessons from black hole quasinormal modes in modified gravity, Eur. Phys. J. Plus 136, 253 (2021), arXiv:2103.01249 [gr-qc] .
- D. del Corral and J. Olmedo, Breaking of isospectrality of quasinormal modes in nonrotating loop quantum gravity black holes, Phys. Rev. D 105, 064053 (2022), arXiv:2201.09584 [gr-qc] .
- J. L. Jaramillo, R. Panosso Macedo, and L. Al Sheikh, Pseudospectrum and Black Hole Quasinormal Mode Instability, Phys. Rev. X 11, 031003 (2021), arXiv:2004.06434 [gr-qc] .
- J. L. Jaramillo, R. Panosso Macedo, and L. A. Sheikh, Gravitational Wave Signatures of Black Hole Quasinormal Mode Instability, Phys. Rev. Lett. 128, 211102 (2022), arXiv:2105.03451 [gr-qc] .
- J. Heading, Resolution of the mystery behind Chandrasekhar's black hole transformations, J. Phys. A: Math. Gen. 10, 885 (1977).
- E. Witten, Dynamical Breaking of Supersymmetry, Nucl. Phys. B 188, 513 (1981).
- F. Cooper and B. Freedman, Aspects of Supersymmetric Quantum Mechanics, Annals Phys. 146, 262 (1983).
- F. Cooper, A. Khare, and U. Sukhatme, Supersymmetry and quantum mechanics, Phys. Rept. 251, 267 (1995), arXiv:hep-th/9405029 .
- D. Gómez-Ullate, N. Kamran, and R. Milson, Supersymmetry and algebraic Darboux transformations, Journal of Physics A Mathematical General 37, 10065 (2004), arXiv:nlin/0402052 [nlin.SI] .
- R. L. Arnowitt, S. Deser, and C. W. Misner, The Dynamics of general relativity, Gen. Rel. Grav. 40, 1997 (2008), arXiv:gr-qc/0405109 [gr-qc] .
- F. Pretorius, Numerical relativity using a generalized harmonic decomposition, Class. Quant. Grav. 22, 425 (2005a), arXiv:gr-qc/0407110 .
- F. Pretorius, Evolution of binary black hole spacetimes, Phys. Rev. Lett. 95, 121101 (2005b), arXiv:gr-qc/0507014 .
- T. W. Baumgarte and S. L. Shapiro, On the numerical integration of Einstein’s field equations, Phys. Rev. D 59, 024007 (1998), arXiv:gr-qc/9810065 .
- M. Shibata and T. Nakamura, Evolution of three-dimensional gravitational waves: Harmonic slicing case, Phys. Rev. D 52, 5428 (1995).
- D. Brizuela, J. M. Martin-Garcia, and G. A. Mena Marugan, Second and higher-order perturbations of a spherical spacetime, Phys. Rev. D 74, 044039 (2006), arXiv:gr-qc/0607025 .
- D. Brizuela, J. M. Martin-Garcia, and G. A. M. Marugan, High-order gauge-invariant perturbations of a spherical spacetime, Phys. Rev. D 76, 024004 (2007), arXiv:gr-qc/0703069 .
- D. Langlois, K. Noui, and H. Roussille, Black hole perturbations in modified gravity, Phys. Rev. D 104, 124044 (2021), arXiv:2103.14750 [gr-qc] .
- G. A. Mena Marugán and A. Mínguez-Sánchez, Axial perturbations in Kantowski-Sachs spacetimes and hybrid quantum cosmology, (2024), arXiv:2402.08307 [gr-qc] .
- Wolfram Research, Mathematica 12 (2020).
- G. D. Birkhoff, Relativity and Modern Physics (Harvard University Press, 1923).
- J. Jebsen, Über die allgemeinen kugelsymmetrischen Lösungen der Einsteinschen Gravitationsgleichungen im Vakuum, Ark. Mat. Ast. Fys.(Stockholm) 15, 1 (1921).
- J. Jebsen, On the general spherically symmetric solutions of Einstein’s gravitational equations in vacuo, Gen. Rel. Grav. 37, 2253–2259 (2005).
- S. Deser and J. Franklin, Schwarzschild and Birkhoff a la Weyl, Am. J. Phys. 73, 261 (2005), arXiv:gr-qc/0408067 .
- N. Voje Johansen and F. Ravndal, On the discovery of Birkhoff’s theorem, Gen. Rel. Grav. 38, 537 (2006), arXiv:physics/0508163 .
- J. Eiesland, The group of motions of an Einstein space, Trans. Amer. Math. Soc. 27, 213 (1925).
- K. Schleich and D. M. Witt, A simple proof of Birkhoff’s theorem for cosmological constant, J. Math. Phys. 51, 112502 (2010), arXiv:0908.4110 [gr-qc] .
- F. Kottler, Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie, Ann. Phys. (Germany) 56, 401–462 (1918).
- H. Nariai, On some static solutions of Einstein’s gravitational field equations in a spherically symmetric case, Sci. Rep. Tohoku Univ. Series I 34, 160 (1950).
- H. Nariai, On a New Cosmological Solution of Einstein’s Field Equations of Gravitation, Gen. Rel. Grav. 31, 963 (1999).
- J. Droste, The field of a single centre in Einstein’s theory of gravitation, and the motion of a particle in that field, Koninklijke Nederlandse Akademie van Wetenschappen Proceedings Series B Physical Sciences 19, 197 (1917).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.