Papers
Topics
Authors
Recent
2000 character limit reached

Canalization reduces the nonlinearity of regulation in biological networks (2402.09703v1)

Published 15 Feb 2024 in q-bio.MN and math.DS

Abstract: Biological networks such as gene regulatory networks possess desirable properties. They are more robust and controllable than random networks. This motivates the search for structural and dynamical features that evolution has incorporated in biological networks. A recent meta-analysis of published, expert-curated Boolean biological network models has revealed several such features, often referred to as design principles. Among others, the biological networks are enriched for certain recurring network motifs, the dynamic update rules are more redundant, more biased and more canalizing than expected, and the dynamics of biological networks are better approximable by linear and lower-order approximations than those of comparable random networks. Since most of these features are interrelated, it is paramount to disentangle cause and effect, that is, to understand which features evolution actively selects for, and thus truly constitute evolutionary design principles. Here, we show that approximability is strongly dependent on the dynamical robustness of a network, and that increased canalization in biological networks can almost completely explain their recently postulated high approximability.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.