Papers
Topics
Authors
Recent
2000 character limit reached

Domain Adaptation for Contrastive Audio-Language Models

Published 14 Feb 2024 in cs.SD and eess.AS | (2402.09585v2)

Abstract: Audio-LLMs (ALM) aim to be general-purpose audio models by providing zero-shot capabilities at test time. The zero-shot performance of ALM improves by using suitable text prompts for each domain. The text prompts are usually hand-crafted through an ad-hoc process and lead to a drop in ALM generalization and out-of-distribution performance. Existing approaches to improve domain performance, like few-shot learning or fine-tuning, require access to annotated data and iterations of training. Therefore, we propose a test-time domain adaptation method for ALMs that does not require access to annotations. Our method learns a domain vector by enforcing consistency across augmented views of the testing audio. We extensively evaluate our approach on 12 downstream tasks across domains. With just one example, our domain adaptation method leads to 3.2% (max 8.4%) average zero-shot performance improvement. After adaptation, the model still retains the generalization property of ALMs.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.