Papers
Topics
Authors
Recent
2000 character limit reached

Leveraging Large Language Models for Enhanced NLP Task Performance through Knowledge Distillation and Optimized Training Strategies

Published 14 Feb 2024 in cs.CL | (2402.09282v4)

Abstract: Emerging LLMs like GPT-4 have revolutionized NLP, showing potential in traditional tasks such as Named Entity Recognition (NER). Our study explores a three-phase training strategy that harnesses GPT-4's capabilities to enhance the BERT model's performance on NER. Initially, GPT-4 annotates a subset of the CONLL2003 and additional BBC dataset without fine-tuning. We then train BERT using a mix of original and LLM-annotated data, analyzing the efficacy of LLM annotations against traditional methods. The second phase involves comparative experiments with different training regimens, assessing the synergy between distilled and original data. We observe that sequential strategies, particularly a simple mix of training first with distilled data followed by original data, significantly boost performance. In the third phase, we investigate various data blending techniques, including sigmoid and power decay functions, to optimize the training process further. Our results indicate that a strategic mix of distilled and original data markedly elevates the NER capabilities of BERT. Our approach presents a scalable methodology that reduces manual annotation costs and increases efficiency, making it especially pertinent in resource-limited and closed-network environments. The study concludes that while the 'Simple Mix' strategy yields the best results, understanding its underlying mechanisms requires further research. Future work will also focus on refining prompt designs and enhancing annotation selection processes, aiming to extend our methodology to diverse NLP tasks.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.