Papers
Topics
Authors
Recent
Search
2000 character limit reached

Synergistic eigenanalysis of covariance and Hessian matrices for enhanced binary classification

Published 14 Feb 2024 in cs.LG and cs.AI | (2402.09281v3)

Abstract: Covariance and Hessian matrices have been analyzed separately in the literature for classification problems. However, integrating these matrices has the potential to enhance their combined power in improving classification performance. We present a novel approach that combines the eigenanalysis of a covariance matrix evaluated on a training set with a Hessian matrix evaluated on a deep learning model to achieve optimal class separability in binary classification tasks. Our approach is substantiated by formal proofs that establish its capability to maximize between-class mean distance (the concept of \textit{separation}) and minimize within-class variances (the concept of \textit{compactness}), which together define the two linear discriminant analysis (LDA) criteria, particularly under ideal data conditions such as isotropy around class means and dominant leading eigenvalues. By projecting data into the combined space of the most relevant eigendirections from both matrices, we achieve optimal class separability as per these LDA criteria. Empirical validation across neural and health datasets consistently supports our theoretical framework and demonstrates that our method outperforms established methods. Our method stands out by addressing both separation and compactness criteria, unlike PCA and the Hessian method, which predominantly emphasize one criterion each. This comprehensive approach captures intricate patterns and relationships, enhancing classification performance. Furthermore, through the utilization of both LDA criteria, our method outperforms LDA itself by leveraging higher-dimensional feature spaces, in accordance with Cover's theorem, which favors linear separability in higher dimensions. Additionally, our approach sheds light on complex DNN decision-making, rendering them comprehensible within a 2D space.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 8 likes about this paper.