Papers
Topics
Authors
Recent
2000 character limit reached

Trace Ratio Based Manifold Learning with Tensor Data

Published 14 Feb 2024 in math.NA and cs.NA | (2402.09072v1)

Abstract: In this paper, we propose an extension of trace ratio based Manifold learning methods to deal with multidimensional data sets. Based on recent progress on the tensor-tensor product, we present a generalization of the trace ratio criterion by using the properties of the t-product. This will conduct us to introduce some new concepts such as Laplacian tensor and we will study formally the trace ratio problem by discuting the conditions for the exitence of solutions and optimality. Next, we will present a tensor Newton QR decomposition algorithm for solving the trace ratio problem. Manifold learning methods such as Laplacian eigenmaps, linear discriminant analysis and locally linear embedding will be formulated in a tensor representation and optimized by the proposed algorithm. Lastly, we will evaluate the performance of the different studied dimension reduction methods on several synthetic and real world data sets.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 2 likes about this paper.