Papers
Topics
Authors
Recent
2000 character limit reached

Sudoku Number of Corona of Graphs

Published 14 Feb 2024 in math.CO | (2402.08933v2)

Abstract: Let $G = (V,E)$ be a graph of order $n$ with chromatic number $\chi(G) = k$, let $S \subset V$ and let $C_0$ be a $k$-coloring of the induced subgraph $G[S]$. The coloring $C_0$ is called an extendable coloring, if $C_0$ can be extended to a $k$-coloring of $G$ and it is a Sudoku coloring of $G$ if the extension is unique. The smallest order of such an induced subgraph $G[S]$ of $G$ which admits a Sudoku coloring is called the Sudoku number of $G$ and is denoted by $sn(G)$. In this paper, we first introduce the notion of uniquely color extendable vertex and then we obtain the lower and upper bounds for the Sudoku number of $G \circ K_1$. Some families of graphs which attain these bounds are also obtained. The exact value of the Sudoku number of corona of $C_n$, $W_n$ and $K_n$ with $K_1$ and $C_n \circ P_m$ are also obtained.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.