Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Effect of Interface on Density and Elastic Moduli of $\textbf{Al/C}_{60}$ Nanocomposites (2402.08326v2)

Published 13 Feb 2024 in cond-mat.mes-hall and cond-mat.mtrl-sci

Abstract: The paper analyzes theoretically the influence of fullerenes on the characteristics of $\mathrm{Al/C}{60}$ composites. The molecular dynamics method is used to study the dependences of density and stiffness constants on the concentration of inclusions, and to calculate the values of the bulk and shear moduli for isotropic polycrystalline nanocomposites. The analysis shows that interfacial interaction significantly affects the properties of nanocomposites. This effect can be taken into account within the framework of the theory of heterogeneous media using the interphase layer model. The properties of the interphase layer are determined by interfacial interaction and can be calculated by approximating the results of molecular dynamics calculations. Using assumptions about the simplified form of the two-particle distribution function allows the interfacial interaction energy to be calculated and the interphase layer properties to be assessed analytically. The paper compares numerical results and analytical estimates, and discusses the validity of the approximations used. The analysis performed on the example of an $\mathrm{Al/C}{60}$ composite material demonstrates the feasibility of using the analytical model of the interphase layer to estimate the effective density and elastic moduli of heterogeneous media with nano-inhomogeneities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. D. Shinde, P. Sahoo, and J. Davim, Tribological characterization of particulate-reinforced aluminum metal matrix nanocomposites: A review, Advanced Composites Letters 29, 2633366X20921403 (2020).
  2. R. Ruoff and A. Ruoff, Is C60subscriptC60\mathrm{C}_{60}roman_C start_POSTSUBSCRIPT 60 end_POSTSUBSCRIPT stiffer than diamond?, Nature 350, 663 (1991).
  3. A. Khabibrakhmanov and P. Sorokin, Carbon at the nanoscale: Ultrastiffness and unambiguous definition of incompressibility, Carbon 160, 228 (2020).
  4. M. Amer and J. Maguire, On the compressibility of C60subscriptC60\mathrm{C}_{60}roman_C start_POSTSUBSCRIPT 60 end_POSTSUBSCRIPT individual molecules, Chemical Physics Letters 476, 232 (2009).
  5. R. Christensen, Mechanics of composite materials (Courier Corporation, 2012).
  6. M. Gurtin, J. Weissmüller, and F. Larche, A general theory of curved deformable interfaces in solids at equilibrium, Philosophical Magazine A 78, 1093 (1998).
  7. P. Sharma and S. Ganti, Size-dependent eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies, J. Appl. Mech. 71, 663 (2004).
  8. A. Eletskiĭ and B. Smirnov, Fullerenes, Physics-Uspekhi 36, 202 (1993).
  9. F. Neese, Software update: the orca program system, version 4.0, Wiley Interdisciplinary Reviews: Computational Molecular Science 8, e1327 (2018).
  10. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of Computational Physics 117, 1 (1995).
  11. J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Physical Review B 39, 5566 (1989).
  12. F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for HH\mathrm{H}roman_H to RnRn\mathrm{Rn}roman_Rn: Design and assessment of accuracy, Physical Chemistry Chemical Physics 7, 3297 (2005).
  13. J. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Physical Review Letters 77, 3865 (1996).
  14. V. Reshetniak and A. Aborkin, Aluminum–carbon interaction at the aluminum–graphene and aluminum–graphite interfaces, Journal of Experimental and Theoretical Physics 130, 214 (2020).
  15. V. Reshetniak and A. Aborkin, Interaction between Al⁢–⁢CAl–C\mathrm{Al–C}roman_Al – roman_C atoms at the aluminum-carbon nanoparticle interface (in russian), Fundamental’nye Problemy Sovremennogo Materialovedenia (Basic Problems of Material Science (BPMS)) 20, 515 (2023).
  16. J. Nye, Physical properties of crystals: their representation by tensors and matrices (Oxford university press, 1985).
  17. T. Shermergor, Theory of elasticity of micro-inhomogeneous media (In Russian) (Science, Moscow, 1977).
  18. R. Balescu, Equilibrium and nonequilibrium statistical mechanics (John Wiley and Sons, 1977).
  19. G. Simmons and H. Wang, Single crystal elastic constants and calculated aggregate properties: a handbook (The MIT Press, 1971).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.