Papers
Topics
Authors
Recent
2000 character limit reached

Covariance estimation with direction dependence accuracy

Published 13 Feb 2024 in math.ST, math.PR, and stat.TH | (2402.08288v1)

Abstract: We construct an estimator $\widehat{\Sigma}$ for covariance matrices of unknown, centred random vectors X, with the given data consisting of N independent measurements $X_1,...,X_N$ of X and the wanted confidence level. We show under minimal assumptions on X, the estimator performs with the optimal accuracy with respect to the operator norm. In addition, the estimator is also optimal with respect to direction dependence accuracy: $\langle \widehat{\Sigma}u,u\rangle$ is an optimal estimator for $\sigma2(u)=\mathbb{E}\langle X,u\rangle2$ when $\sigma2(u)$ is ``large".

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.