Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Competition Winning Deep Reinforcement Learning Agent in microRTS (2402.08112v1)

Published 12 Feb 2024 in cs.LG and cs.AI

Abstract: Scripted agents have predominantly won the five previous iterations of the IEEE microRTS ($\mu$RTS) competitions hosted at CIG and CoG. Despite Deep Reinforcement Learning (DRL) algorithms making significant strides in real-time strategy (RTS) games, their adoption in this primarily academic competition has been limited due to the considerable training resources required and the complexity inherent in creating and debugging such agents. RAISocketAI is the first DRL agent to win the IEEE microRTS competition. In a benchmark without performance constraints, RAISocketAI regularly defeated the two prior competition winners. This first competition-winning DRL submission can be a benchmark for future microRTS competitions and a starting point for future DRL research. Iteratively fine-tuning the base policy and transfer learning to specific maps were critical to RAISocketAI's winning performance. These strategies can be used to economically train future DRL agents. Further work in Imitation Learning using Behavior Cloning and fine-tuning these models with DRL has proven promising as an efficient way to bootstrap models with demonstrated, competitive behaviors.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Scott Goodfriend (3 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets