PyDMD: A Python package for robust dynamic mode decomposition (2402.07463v1)
Abstract: The dynamic mode decomposition (DMD) is a simple and powerful data-driven modeling technique that is capable of revealing coherent spatiotemporal patterns from data. The method's linear algebra-based formulation additionally allows for a variety of optimizations and extensions that make the algorithm practical and viable for real-world data analysis. As a result, DMD has grown to become a leading method for dynamical system analysis across multiple scientific disciplines. PyDMD is a Python package that implements DMD and several of its major variants. In this work, we expand the PyDMD package to include a number of cutting-edge DMD methods and tools specifically designed to handle dynamics that are noisy, multiscale, parameterized, prohibitively high-dimensional, or even strongly nonlinear. We provide a complete overview of the features available in PyDMD as of version 1.0, along with a brief overview of the theory behind the DMD algorithm, information for developers, tips regarding practical DMD usage, and introductory coding examples. All code is available at https://github.com/PyDMD/PyDMD .
- https://doi.org/10.1017/S0022112010001217.
- https://doi.org/10.3934/jcd.2014.1.391.
- https://doi.org/10.1137/1.9781611974508.
- https://doi.org/10.1146/annurev-fluid-030121-015835.
- https://doi.org/10.1017/9781009089517.
- https://polytechnique.hal.science/hal-01053394.
- http://meetings.aps.org/link/BAPS.2008.DFD.MR.7.
- https://doi.org/10.1017/jfm.2016.678.
- https://doi.org/10.1093/inthealth/ihv009.
- https://doi.org/10.1016/j.jneumeth.2015.10.010.
- https://doi.org/10.3934/jcd.2020009.
- https://doi.org/10.1080/14697688.2016.1170194.
- https://doi.org/10.1063/1.5027419.
- https://doi.org/10.1063/1.5138932.
- Preprint, https://arxiv.org/abs/1404.7592.
- https://doi.org/10.1080/01691864.2014.981292.
- https://doi.org/10.1109/TRO.2019.2923880.
- https://doi.org/10.15607/RSS.2019.XV.060.
- https://doi.org/10.1109/PESGM41954.2020.9281781.
- https://doi.org/10.1109/TPWRS.2010.2103369.
- https://doi.org/10.1007/s00332-010-9087-5.
- https://doi.org/10.1017/S0022112009992059.
- https://doi.org/10.1137/21M1401243.
- https://doi.org/10.21105/joss.00530.
- https://doi.org/10.1137/15M1013857.
- https://doi.org/10.1137/15M1023543.
- https://doi.org/10.1063/1.4863670.
- https://doi.org/10.1007/s11554-016-0655-2.
- https://doi.org/10.1137/17M1125236.
- https://doi.org/10.1137/15M1054924.
- https://doi.org/10.1007/s00348-016-2127-7.
- https://doi.org/10.1007/s00162-017-0432-2.
- https://doi.org/10.1007/s00332-021-09770-w.
- https://doi.org/10.1103/PhysRevE.96.033310.
- https://doi.org/10.1137/M1124176.
- https://doi.org/10.1098/rsta.2021.0199.
- https://doi.org/10.1103/PhysRevE.99.063311.
- https://doi.org/10.1137/22M1481658.
- https://doi.org/10.1007/s10444-023-10016-4.
- https://doi.org/10.1137/18M1215013.
- https://doi.org/10.1098/rspa.2022.0576.
- https://doi.org/10.1007/s00332-015-9258-5.
- https://doi.org/10.3934/jcd.2015005.
- https://doi.org/10.3934/jcd.2016003.
- https://doi.org/10.1038/s41467-017-00030-8.
- http://doi.org/10.1098/rspa.2021.0097.
- https://doi.org/10.1098/rspa.2021.0830.
- https://doi.org/10.1137/19M1289881.
- https://doi.org/10.1007/BFb0091924.
- https://doi.org/10.1007/BF01053745.
- https://doi.org/10.1007/s00332-012-9130-9.
- https://doi.org/10.1063/1.4895898.
- https://doi.org/10.1007/s00348-011-1235-7.
- https://doi.org/10.1017/jfm.2013.249.
- https://doi.org/10.1137/18M1233960.
- https://doi.org/10.1017/jfm.2018.283.
- https://doi.org/10.23919/ACC45564.2020.9147729.
- https://doi.org/10.1137/22M1521407.
- https://doi.org/10.1088/1361-6544/aabc8f.
- https://doi.org/10.1017/jfm.2022.1052.
- https://doi.org/10.1002/cpa.22125.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.