Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Descent Method for Nonsmooth Multiobjective Optimization in Hilbert Spaces

Published 9 Feb 2024 in math.OC | (2402.06376v1)

Abstract: The efficient optimization method for locally Lipschitz continuous multiobjective optimization problems from [1] is extended from finite-dimensional problems to general Hilbert spaces. The method iteratively computes Pareto critical points, where in each iteration, an approximation of the subdifferential is computed in an efficient manner and then used to compute a common descent direction for all objective functions. To prove convergence, we present some new optimality results for nonsmooth multiobjective optimization problems in Hilbert spaces. Using these, we can show that every accumulation point of the sequence generated by our algorithm is Pareto critical under common assumptions. Computational efficiency for finding Pareto critical points is numerically demonstrated for multiobjective optimal control of an obstacle problem.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.