Papers
Topics
Authors
Recent
Search
2000 character limit reached

Evolving AI for Wellness: Dynamic and Personalized Real-time Loneliness Detection Using Passive Sensing

Published 8 Feb 2024 in cs.HC | (2402.05698v1)

Abstract: Loneliness is a growing health concern as it can lead to depression and other associated mental health problems for people who experience feelings of loneliness over prolonged periods of time. Utilizing passive sensing methods that use smartphone and wearable sensor data to capture daily behavioural patterns offers a promising approach for the early detection of loneliness. Given the subjective nature of loneliness and people's varying daily routines, past detection approaches using machine learning models often face challenges with effectively detecting loneliness. This paper proposes a methodologically novel approach, particularly developing a loneliness detection system that evolves over time, adapts to new data, and provides real-time detection. Our study utilized the Globem dataset, a comprehensive collection of passive sensing data acquired over 10 weeks from university students. The base of our approach is the continuous identification and refinement of similar behavioural groups among students using an incremental clustering method. As we add new data, the model improves based on changing behavioural patterns. Parallel to this, we create and update classification models to detect loneliness among the evolving behavioural groups of students. When unique behavioural patterns are observed among student data, specialized classification models have been created. For predictions of loneliness, a collaborative effort between the generalized and specialized models is employed, treating each prediction as a vote. This study's findings reveal that group-based loneliness detection models exhibit superior performance compared to generic models, underscoring the necessity for more personalized approaches tailored to specific behavioural patterns. These results pave the way for future research, emphasizing the development of finely-tuned, individualized mental health interventions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.