Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosting Dynamic TDD in Small Cell Networks by the Multiplicative Weight Update Method (2402.05641v1)

Published 8 Feb 2024 in cs.IT and math.IT

Abstract: We leverage the Multiplicative Weight Update (MWU) method to develop a decentralized algorithm that significantly improves the performance of dynamic time division duplexing (D-TDD) in small cell networks. The proposed algorithm adaptively adjusts the time portion allocated to uplink (UL) and downlink (DL) transmissions at every node during each scheduled time slot, aligning the packet transmissions toward the most appropriate link directions according to the feedback of signal-to-interference ratio information. Our simulation results reveal that compared to the (conventional) fixed configuration of UL/DL transmission probabilities in D-TDD, incorporating MWU into D-TDD brings about a two-fold improvement of mean packet throughput in the DL and a three-fold improvement of the same performance metric in the UL, resulting in the D-TDD even outperforming Static-TDD in the UL. It also shows that the proposed scheme maintains a consistent performance gain in the presence of an ascending traffic load, validating its effectiveness in boosting the network performance. This work also demonstrates an approach that accounts for algorithmic considerations at the forefront when solving stochastic problems.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com