Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FedAA: A Reinforcement Learning Perspective on Adaptive Aggregation for Fair and Robust Federated Learning (2402.05541v2)

Published 8 Feb 2024 in cs.LG, cs.AI, and cs.DC

Abstract: Federated Learning (FL) has emerged as a promising approach for privacy-preserving model training across decentralized devices. However, it faces challenges such as statistical heterogeneity and susceptibility to adversarial attacks, which can impact model robustness and fairness. Personalized FL attempts to provide some relief by customizing models for individual clients. However, it falls short in addressing server-side aggregation vulnerabilities. We introduce a novel method called \textbf{FedAA}, which optimizes client contributions via \textbf{A}daptive \textbf{A}ggregation to enhance model robustness against malicious clients and ensure fairness across participants in non-identically distributed settings. To achieve this goal, we propose an approach involving a Deep Deterministic Policy Gradient-based algorithm for continuous control of aggregation weights, an innovative client selection method based on model parameter distances, and a reward mechanism guided by validation set performance. Empirically, extensive experiments demonstrate that, in terms of robustness, \textbf{FedAA} outperforms the state-of-the-art methods, while maintaining comparable levels of fairness, offering a promising solution to build resilient and fair federated systems. Our code is available at https://github.com/Gp1g/FedAA.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jialuo He (1 paper)
  2. Wei Chen (1290 papers)
  3. Xiaojin Zhang (54 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com