Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Synergistic Interplay between Search and Large Language Models for Information Retrieval (2305.07402v3)

Published 12 May 2023 in cs.CL and cs.IR

Abstract: Information retrieval (IR) plays a crucial role in locating relevant resources from vast amounts of data, and its applications have evolved from traditional knowledge bases to modern retrieval models (RMs). The emergence of LLMs has further revolutionized the IR field by enabling users to interact with search systems in natural languages. In this paper, we explore the advantages and disadvantages of LLMs and RMs, highlighting their respective strengths in understanding user-issued queries and retrieving up-to-date information. To leverage the benefits of both paradigms while circumventing their limitations, we propose InteR, a novel framework that facilitates information refinement through synergy between RMs and LLMs. InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections and enables LLMs to enhance prompt formulation using retrieved documents. This iterative refinement process augments the inputs of RMs and LLMs, leading to more accurate retrieval. Experiments on large-scale retrieval benchmarks involving web search and low-resource retrieval tasks demonstrate that InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods, even those using relevance judgment. Source code is available at https://github.com/Cyril-JZ/InteR

Definition Search Book Streamline Icon: https://streamlinehq.com
References (73)
  1. Open-domain question answering goes conversational via question rewriting. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.  520–534, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.44. URL https://aclanthology.org/2021.naacl-main.44.
  2. Ms marco: A human generated machine reading comprehension dataset. arXiv preprint arXiv:1611.09268, 2016.
  3. Autoregressive search engines: Generating substrings as document identifiers. Advances in Neural Information Processing Systems, 35:31668–31683, 2022.
  4. Improving language models by retrieving from trillions of tokens. In International conference on machine learning, pp.  2206–2240. PMLR, 2022.
  5. Autoregressive entity retrieval. In International Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=5k8F6UU39V.
  6. Reading Wikipedia to answer open-domain questions. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.  1870–1879, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1171. URL https://aclanthology.org/P17-1171.
  7. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https://lmsys.org/blog/2023-03-30-vicuna/.
  8. Overview of the trec 2019 deep learning track. arXiv preprint arXiv:2003.07820, 2020.
  9. Overview of the trec 2020 deep learning track. arXiv preprint arXiv:2102.07662, 2021.
  10. Context-aware sentence/passage term importance estimation for first stage retrieval. arXiv preprint arXiv:1910.10687, 2019.
  11. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp.  4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.
  12. Condenser: a pre-training architecture for dense retrieval. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp.  981–993, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.75. URL https://aclanthology.org/2021.emnlp-main.75.
  13. Unsupervised corpus aware language model pre-training for dense passage retrieval. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.  2843–2853, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.203. URL https://aclanthology.org/2022.acl-long.203.
  14. Precise zero-shot dense retrieval without relevance labels. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.  1762–1777, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.99. URL https://aclanthology.org/2023.acl-long.99.
  15. Iseeq: Information seeking question generation using dynamic meta-information retrieval and knowledge graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.  10672–10680, 2022.
  16. Learning dense representations for entity retrieval. In Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL), pp.  528–537, Hong Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/K19-1049. URL https://aclanthology.org/K19-1049.
  17. Google. Google bard. https://bard.google.com/, 2023. URL https://bard.google.com/.
  18. Retrieval augmented language model pre-training. In International conference on machine learning, pp.  3929–3938. PMLR, 2020.
  19. Efficiently teaching an effective dense retriever with balanced topic aware sampling. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.  113–122, 2021.
  20. Unsupervised dense information retrieval with contrastive learning. Transactions on Machine Learning Research, 2022. ISSN 2835-8856. URL https://openreview.net/forum?id=jKN1pXi7b0.
  21. Survey of hallucination in natural language generation. ACM Computing Surveys, 55(12):1–38, 2023.
  22. Billion-scale similarity search with gpus. IEEE Transactions on Big Data, 7(3):535–547, 2019.
  23. Contextualized representations using textual encyclopedic knowledge. arXiv preprint arXiv:2004.12006, 2020.
  24. Dense passage retrieval for open-domain question answering. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.  6769–6781, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.550. URL https://aclanthology.org/2020.emnlp-main.550.
  25. Generalization through memorization: Nearest neighbor language models. In International Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=HklBjCEKvH.
  26. Demonstrate-search-predict: Composing retrieval and language models for knowledge-intensive nlp. arXiv preprint arXiv:2212.14024, 2022.
  27. Natural questions: A benchmark for question answering research. Transactions of the Association for Computational Linguistics, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL https://aclanthology.org/Q19-1026.
  28. A survey on complex knowledge base question answering: Methods, challenges and solutions. In Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp.  4483–4491. International Joint Conferences on Artificial Intelligence Organization, 8 2021. doi: 10.24963/ijcai.2021/611. URL https://doi.org/10.24963/ijcai.2021/611. Survey Track.
  29. Generative multi-hop retrieval. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.  1417–1436, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. URL https://aclanthology.org/2022.emnlp-main.92.
  30. Latent retrieval for weakly supervised open domain question answering. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.  6086–6096, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1612. URL https://aclanthology.org/P19-1612.
  31. Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:9459–9474, 2020.
  32. In-batch negatives for knowledge distillation with tightly-coupled teachers for dense retrieval. In Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pp.  163–173, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.repl4nlp-1.17. URL https://aclanthology.org/2021.repl4nlp-1.17.
  33. Roberta: A robustly optimized BERT pretraining approach. CoRR, abs/1907.11692, 2019. URL http://arxiv.org/abs/1907.11692.
  34. Less is more: Pretrain a strong Siamese encoder for dense text retrieval using a weak decoder. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp.  2780–2791, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.220. URL https://aclanthology.org/2021.emnlp-main.220.
  35. Large language models know your contextual search intent: A prompting framework for conversational search. arXiv preprint arXiv:2303.06573, 2023.
  36. Generation-augmented retrieval for open-domain question answering. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp.  4089–4100, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.316. URL https://aclanthology.org/2021.acl-long.316.
  37. MetaICL: Learning to learn in context. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.  2791–2809, Seattle, United States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.201. URL https://aclanthology.org/2022.naacl-main.201.
  38. IC Mogotsi. Christopher d. manning, prabhakar raghavan, and hinrich schütze: Introduction to information retrieval. Information Retrieval, 13(2):192–195, 2010.
  39. Webgpt: Browser-assisted question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.
  40. Large dual encoders are generalizable retrievers. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.  9844–9855, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. URL https://aclanthology.org/2022.emnlp-main.669.
  41. Document expansion by query prediction. arXiv preprint arXiv:1904.08375, 2019.
  42. OpenAI. Chatgpt: Optimizing language models for dialogue. https://openai.com/blog/chatgpt/, 2022. URL https://openai.com/blog/chatgpt/.
  43. OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.
  44. Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems, 35:27730–27744, 2022.
  45. Check your facts and try again: Improving large language models with external knowledge and automated feedback. arXiv preprint arXiv:2302.12813, 2023.
  46. Language models as knowledge bases? In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp.  2463–2473, Hong Kong, China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1250. URL https://aclanthology.org/D19-1250.
  47. Is chatgpt a general-purpose natural language processing task solver? arXiv preprint arXiv:2302.06476, 2023.
  48. RocketQA: An optimized training approach to dense passage retrieval for open-domain question answering. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.  5835–5847, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.466. URL https://aclanthology.org/2021.naacl-main.466.
  49. How much knowledge can you pack into the parameters of a language model? In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.  5418–5426, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.437. URL https://aclanthology.org/2020.emnlp-main.437.
  50. The probabilistic relevance framework: BM25 and beyond. Found. Trends Inf. Retr., 3(4):333–389, 2009. doi: 10.1561/1500000019. URL https://doi.org/10.1561/1500000019.
  51. Zaragoza Robertson. Robertson s., zaragoza h. The probabilistic relevance framework: Bm25 and beyond, Found. Trends Inf. Retr, 3(4):333–389, 2009.
  52. Improving passage retrieval with zero-shot question generation. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.  3781–3797, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. URL https://aclanthology.org/2022.emnlp-main.249.
  53. Multitask prompted training enables zero-shot task generalization. In International Conference on Learning Representations, 2022.
  54. Replug: Retrieval-augmented black-box language models. arXiv preprint arXiv:2301.12652, 2023.
  55. Retrieval augmentation reduces hallucination in conversation. In Findings of the Association for Computational Linguistics: EMNLP 2021, pp.  3784–3803, Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.320. URL https://aclanthology.org/2021.findings-emnlp.320.
  56. Transformer memory as a differentiable search index. Advances in Neural Information Processing Systems, 35:21831–21843, 2022.
  57. BEIR: A heterogenous benchmark for zero-shot evaluation of information retrieval models. CoRR, abs/2104.08663, 2021. URL https://arxiv.org/abs/2104.08663.
  58. The fact extraction and VERification (FEVER) shared task. In Proceedings of the First Workshop on Fact Extraction and VERification (FEVER), pp.  1–9, Brussels, Belgium, November 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5501. URL https://aclanthology.org/W18-5501.
  59. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.
  60. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.
  61. Ellen M Voorhees et al. The trec-8 question answering track report. In Trec, volume 99, pp.  77–82, 1999.
  62. GPL: Generative pseudo labeling for unsupervised domain adaptation of dense retrieval. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.  2345–2360, Seattle, United States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.168. URL https://aclanthology.org/2022.naacl-main.168.
  63. Query2doc: Query expansion with large language models. arXiv preprint arXiv:2303.07678, 2023.
  64. Finetuned language models are zero-shot learners. In International Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=gEZrGCozdqR.
  65. RetroMAE: Pre-training retrieval-oriented language models via masked auto-encoder. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.  538–548, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. URL https://aclanthology.org/2022.emnlp-main.35.
  66. Approximate nearest neighbor negative contrastive learning for dense text retrieval. In International Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=zeFrfgyZln.
  67. Anserini: Enabling the use of lucene for information retrieval research. In Noriko Kando, Tetsuya Sakai, Hideo Joho, Hang Li, Arjen P. de Vries, and Ryen W. White (eds.), Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan, August 7-11, 2017, pp.  1253–1256. ACM, 2017. doi: 10.1145/3077136.3080721. URL https://doi.org/10.1145/3077136.3080721.
  68. Pretrained transformers for text ranking: BERT and beyond. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorials, pp.  1–4, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-tutorials.1. URL https://aclanthology.org/2021.naacl-tutorials.1.
  69. Generate rather than retrieve: Large language models are strong context generators. In The Eleventh International Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=fB0hRu9GZUS.
  70. COCO-DR: Combating the distribution shift in zero-shot dense retrieval with contrastive and distributionally robust learning. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.  1462–1479, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. URL https://aclanthology.org/2022.emnlp-main.95.
  71. How language model hallucinations can snowball. arXiv preprint arXiv:2305.13534, 2023a.
  72. Siren’s song in the ai ocean: A survey on hallucination in large language models. arXiv preprint arXiv:2309.01219, 2023b.
  73. Hyperlink-induced pre-training for passage retrieval in open-domain question answering. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.  7135–7146, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.493. URL https://aclanthology.org/2022.acl-long.493.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Jiazhan Feng (11 papers)
  2. Chongyang Tao (61 papers)
  3. Xiubo Geng (36 papers)
  4. Tao Shen (87 papers)
  5. Can Xu (98 papers)
  6. Guodong Long (115 papers)
  7. Dongyan Zhao (144 papers)
  8. Daxin Jiang (138 papers)
Citations (3)