Papers
Topics
Authors
Recent
Search
2000 character limit reached

BOWL: A Deceptively Simple Open World Learner

Published 7 Feb 2024 in cs.LG | (2402.04814v2)

Abstract: Traditional machine learning excels on static benchmarks, but the real world is dynamic and seldom as carefully curated as test sets. Practical applications may generally encounter undesired inputs, are required to deal with novel information, and need to ensure operation through their full lifetime - aspects where standard deep models struggle. These three elements may have been researched individually, but their practical conjunction, i.e., open world learning, is much less consolidated. In this paper, we posit that neural networks already contain a powerful catalyst to turn them into open world learners: the batch normalization layer. Leveraging its tracked statistics, we derive effective strategies to detect in- and out-of-distribution samples, select informative data points, and update the model continuously. This, in turn, allows us to demonstrate that existing batch-normalized models can be made more robust, less prone to forgetting over time, and be trained efficiently with less data.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 4 tweets with 40 likes about this paper.