Quarkonium dynamics in the quantum Brownian regime with non-abelian quantum master equations (2402.04488v1)
Abstract: We present numerical solutions in a one-dimensional setting of quantum master equations that have been recently derived. We focus on the dynamics of a single heavy quark-antiquark pair in a Quark-Gluon Plasma in thermal equilibrium, in the so-called quantum Brownian regime where the temperature of the plasma is large in comparison with the spacing between the energy levels of the $Q\bar{Q}$ system. The one-dimensional potential used in the calculations has been adjusted so as to produce numbers that are relevant for the phenomenology of the charmonium. The equations are solved using different initial states and medium configurations. Various temperature regimes are studied and the effects of screening and collisions thoroughly analyzed. Technical features of the equations are analyzed. The contributions of the different operators that control the evolution are discussed as a function of the temperature. Some phenomenological consequences are addressed.
- C. Young and K. Dusling, “Quarkonium above deconfinement as an open quantum system,” Phys. Rev. C, vol. 87, no. 6, p. 065206, 2013, 1001.0935.
- N. Borghini and C. Gombeaud, “Heavy quarkonia in a medium as a quantum dissipative system: Master equation approach,” Eur. Phys. J. C, vol. 72, p. 2000, 2012, 1109.4271.
- Y. Akamatsu and A. Rothkopf, “Stochastic potential and quantum decoherence of heavy quarkonium in the quark-gluon plasma,” Phys. Rev. D, vol. 85, p. 105011, 2012, 1110.1203.
- Y. Akamatsu, “Real-time quantum dynamics of heavy quark systems at high temperature,” Phys. Rev. D, vol. 87, no. 4, p. 045016, 2013, 1209.5068.
- R. Katz and P. B. Gossiaux, “Semi-classical approach to J/ψ𝐽𝜓J/\psiitalic_J / italic_ψ suppression in high energy heavy-ion collisions,” J. Phys. Conf. Ser., vol. 509, p. 012095, 2014, 1312.0881.
- Y. Akamatsu, “Heavy quark master equations in the Lindblad form at high temperatures,” Phys. Rev. D, vol. 91, no. 5, p. 056002, 2015, 1403.5783.
- R. Katz and P. B. Gossiaux, “The Schrödinger–Langevin equation with and without thermal fluctuations,” Annals Phys., vol. 368, pp. 267–295, 2016, 1504.08087.
- J.-P. Blaizot, D. De Boni, P. Faccioli, and G. Garberoglio, “Heavy quark bound states in a quark–gluon plasma: Dissociation and recombination,” Nucl. Phys. A, vol. 946, pp. 49–88, 2016, 1503.03857.
- N. Brambilla, M. A. Escobedo, J. Soto, and A. Vairo, “Quarkonium suppression in heavy-ion collisions: an open quantum system approach,” Phys. Rev. D, vol. 96, no. 3, p. 034021, 2017, 1612.07248.
- N. Brambilla, M. A. Escobedo, J. Soto, and A. Vairo, “Heavy quarkonium suppression in a fireball,” Phys. Rev. D, vol. 97, no. 7, p. 074009, 2018, 1711.04515.
- D. De Boni, “Fate of in-medium heavy quarks via a Lindblad equation,” JHEP, vol. 08, p. 064, 2017, 1705.03567.
- J.-P. Blaizot and M. A. Escobedo, “Quantum and classical dynamics of heavy quarks in a quark-gluon plasma,” JHEP, vol. 06, p. 034, 2018, 1711.10812.
- J.-P. Blaizot and M. A. Escobedo, “Approach to equilibrium of a quarkonium in a quark-gluon plasma,” Phys. Rev. D, vol. 98, no. 7, p. 074007, 2018, 1803.07996.
- X. Yao and B. Müller, “Quarkonium inside the quark-gluon plasma: Diffusion, dissociation, recombination, and energy loss,” Phys. Rev. D, vol. 100, no. 1, p. 014008, 2019, 1811.09644.
- A. Rothkopf, “Heavy quarkonium in extreme conditions,” Physics Reports, vol. 858, p. 1–117, May 2020.
- X. Yao, “Open quantum systems for quarkonia,” Int. J. Mod. Phys. A, vol. 36, no. 20, p. 2130010, 2021, 2102.01736.
- Y. Akamatsu, “Quarkonium in quark–gluon plasma: Open quantum system approaches re-examined,” Prog. Part. Nucl. Phys., vol. 123, p. 103932, 2022, 2009.10559.
- L. Grandchamp, R. Rapp, and G. E. Brown, “In medium effects on charmonium production in heavy ion collisions,” Phys. Rev. Lett., vol. 92, p. 212301, 2004.
- X. Zhao and R. Rapp, “Charmonium in Medium: From Correlators to Experiment,” Phys. Rev. C, vol. 82, p. 064905, 2010, 1008.5328.
- X. Du, R. Rapp, and M. He, “Color Screening and Regeneration of Bottomonia in High-Energy Heavy-Ion Collisions,” Phys. Rev. C, vol. 96, no. 5, p. 054901, 2017, 1706.08670.
- K. Zhou, N. Xu, Z. Xu, and P. Zhuang, “Medium effects on charmonium production at ultrarelativistic energies available at the CERN Large Hadron Collider,” Phys. Rev. C, vol. 89, no. 5, p. 054911, 2014, 1401.5845.
- Y. Liu, B. Chen, N. Xu, and P. Zhuang, “ΥΥ\Upsilonroman_Υ Production as a Probe for Early State Dynamics in High Energy Nuclear Collisions at RHIC,” Phys. Lett. B, vol. 697, pp. 32–36, 2011, 1009.2585.
- X. Yao, W. Ke, Y. Xu, S. A. Bass, and B. Müller, “Coupled Boltzmann Transport Equations of Heavy Quarks and Quarkonia in Quark-Gluon Plasma,” JHEP, vol. 21, p. 046, 2020, 2004.06746.
- C. Young and E. Shuryak, “Charmonium in strongly coupled quark-gluon plasma,” Phys. Rev. C, vol. 79, p. 034907, 2009, 0803.2866.
- N. Brambilla, M. A. Escobedo, M. Strickland, A. Vairo, P. Vander Griend, and J. H. Weber, “Bottomonium suppression in an open quantum system using the quantum trajectories method,” J. High Energ. Phys., vol. 05, p. 136, 5 2021, 2012.01240.
- N. Brambilla, M. A. Escobedo, M. Strickland, A. Vairo, P. Vander Griend, and J. H. Weber, “Bottomonium production in heavy-ion collisions using quantum trajectories: Differential observables and momentum anisotropy,” Phys. Rev. D, vol. 104, no. 9, p. 094049, 2021, 2107.06222.
- N. Brambilla, M. A. Escobedo, A. Islam, M. Strickland, A. Tiwari, A. Vairo, and P. Vander Griend, “Heavy quarkonium dynamics at next-to-leading order in the binding energy over temperature,” J. High Energ. Phys., vol. 08, p. 303, 2022, 2205.10289.
- S. Kajimoto, Y. Akamatsu, M. Asakawa, and A. Rothkopf, “Dynamical dissociation of quarkonia by wave function decoherence,” Phys. Rev. D, vol. 97, no. 1, p. 014003, 2018, 1705.03365.
- R. Sharma and A. Tiwari, “Quantum evolution of quarkonia with correlated and uncorrelated noise,” Phys. Rev. D, vol. 101, no. 7, p. 074004, 2020, 1912.07036.
- Y. Akamatsu, M. Asakawa, and S. Kajimoto, “Dynamics of in-medium quarkonia in SU(3) and SU(2) gauge theories,” Phys. Rev. D, vol. 105, p. 054036, Mar 2022, 2108.06921.
- T. Miura, Y. Akamatsu, M. Asakawa, and A. Rothkopf, “Quantum Brownian motion of a heavy quark pair in the quark-gluon plasma,” Phys. Rev. D, vol. 101, no. 3, p. 034011, 2020, 1908.06293.
- T. Miura, Y. Akamatsu, M. Asakawa, and Y. Kaida, “Simulation of Lindblad equations for quarkonium in the quark-gluon plasma,” Phys. Rev. D, vol. 106, p. 074001, Oct 2022, 2205.15551.
- O. Alund, Y. Akamatsu, F. Laurén, T. Miura, J. Nordström, and A. Rothkopf, “Trace preserving quantum dynamics using a novel reparametrization-neutral summation-by-parts difference operator,” J. Comput. Phys., vol. 425, p. 109917, 2021, 2004.04406.
- J. D. Bjorken, “Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region,” Phys. Rev. D, vol. 27, pp. 140–151, 1983.
- R. Katz, S. Delorme, and P.-B. Gossiaux, “One-dimensional complex potentials for quarkonia in a quark–gluon plasma,” Eur. Phys. J. A, vol. 58, no. 10, p. 198, 2022, 2205.05154.
- J.-P. Blaizot and M. A. Escobedo, “Phenomenological study of quarkonium suppression and the impact of the energy gap between singlets and octets,” Phys. Rev. D, vol. 104, no. 5, p. 054034, 2021, 2106.15371.
- A. Daddi Hammou, J.-P. Blaizot, S. Delorme, P.-B. Gossiaux, and T. Gousset, “Quantum vs. semi-classical description of in-QGP quarkonia in the quantum Brownian regime,” 2024, (in preparation).
- M. Laine, O. Philipsen, P. Romatschke, and M. Tassler, “Real-time static potential in hot QCD,” JHEP, vol. 03, p. 054, 2007, hep-ph/0611300.
- A. Beraudo, J.-P. Blaizot, and C. Ratti, “Real and imaginary-time Q anti-Q correlators in a thermal medium,” Nucl. Phys. A, vol. 806, pp. 312–338, 2008, 0712.4394.
- D. Lafferty and A. Rothkopf, “Improved Gauss law model and in-medium heavy quarkonium at finite density and velocity,” Phys. Rev. D, vol. 101, no. 5, p. 056010, 2020, 1906.00035.
- M. L. Mangano, “Two lectures on heavy quark production in hadronic collisions,” Proc. Int. Sch. Phys. Fermi, vol. 137, pp. 95–137, 1998, hep-ph/9711337.
- J. Cugnon and P. B. Gossiaux, “J / psi evolution and quark - gluon plasma to hadron phase transition,” Z. Phys. C, vol. 58, pp. 77–93, 1993.
- H. Breuer and F. Petruccione, The Theory of Open Quantum Systems. OUP Oxford, 2007.
- A. Ghosh, M. Bandyopadhyay, S. Dattagupta, and S. Gupta, “Quantum Brownian Motion: A Review,” 6 2023, 2306.02665.
- H. Spohn, “An algebraic condition for the approach to equilibrium of an open n-level system,” Letters in Mathematical Physics, vol. 2, pp. 33–38, 1977.
- Springer, 2012.
- F. Nathan and M. S. Rudner, “Universal lindblad equation for open quantum systems,” Phys. Rev. B, vol. 102, p. 115109, Sep 2020.
- D. Tupkary, A. Dhar, M. Kulkarni, and A. Purkayastha, “Fundamental limitations in Lindblad descriptions of systems weakly coupled to baths,” Phys. Rev. A, vol. 105, no. 3, p. 032208, 2022, 2105.12091.
- S. Delorme, Theoretical description of quarkonia dynamics in the Quark Gluon Plasma with a quantum master equation approach. Phd thesis, IMT Atlantique, Nantes, Fr, October 2021. Available at https://theses.hal.science/tel-03664821.
- P. Zyla et al., “Review of Particle Physics,” PTEP, vol. 2020, no. 8, p. 083C01, 2020.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.