Papers
Topics
Authors
Recent
Search
2000 character limit reached

Hierarchical Large Language Models in Cloud Edge End Architecture for Heterogeneous Robot Cluster Control

Published 6 Feb 2024 in cs.RO | (2402.03703v2)

Abstract: Despite their powerful semantic understanding and code generation capabilities, LLMs still face challenges when dealing with complex tasks. Multi agent strategy generation and motion control are highly complex domains that inherently require experts from multiple fields to collaborate. To enhance multi agent strategy generation and motion control, we propose an innovative architecture that employs the concept of a cloud edge end hierarchical structure. By leveraging multiple LLMs with distinct areas of expertise, we can efficiently generate strategies and perform task decomposition. Introducing the cosine similarity approach,aligning task decomposition instructions with robot task sequences at the vector level, we can identify subtasks with incomplete task decomposition and iterate on them multiple times to ultimately generate executable machine task sequences.The robot is guided through these task sequences to complete tasks of higher complexity. With this architecture, we implement the process of natural language control of robots to perform complex tasks, and successfully address the challenge of multi agent execution of open tasks in open scenarios and the problem of task decomposition.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.