Papers
Topics
Authors
Recent
2000 character limit reached

A Complete Survey on Contemporary Methods, Emerging Paradigms and Hybrid Approaches for Few-Shot Learning

Published 5 Feb 2024 in cs.LG and cs.AI | (2402.03017v3)

Abstract: Despite the widespread success of deep learning, its intense requirements for vast amounts of data and extensive training make it impractical for various real-world applications where data is scarce. In recent years, Few-Shot Learning (FSL) has emerged as a learning paradigm that aims to address these limitations by leveraging prior knowledge to enable rapid adaptation to novel learning tasks. Due to its properties that highly complement deep learning's data-intensive needs, FSL has seen significant growth in the past few years. This survey provides a comprehensive overview of both well-established methods as well as recent advancements in the FSL field. The presented taxonomy extends previously proposed ones by incorporating emerging FSL paradigms, such as in-context learning, along with novel categories within the meta-learning paradigm for FSL, including neural processes and probabilistic meta-learning. Furthermore, a holistic overview of FSL is provided by discussing hybrid FSL approaches that extend FSL beyond the typically examined supervised learning setting. The survey also explores FSL's diverse applications across various domains. Finally, recent trends shaping the field, outstanding challenges, and promising future research directions are discussed.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.