Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Statistical Inference for Generalized Integer Autoregressive Processes (2402.02664v1)

Published 5 Feb 2024 in stat.ME

Abstract: A popular and flexible time series model for counts is the generalized integer autoregressive process of order $p$, GINAR($p$). These Markov processes are defined using thinning operators evaluated on past values of the process along with a discretely-valued innovation process. This class includes the commonly used INAR($p$) process, defined with binomial thinning and Poisson innovations. GINAR processes can be used in a variety of settings, including modeling time series with low counts, and allow for more general mean-variance relationships, capturing both over- or under-dispersion. While there are many thinning operators and innovation processes given in the literature, less focus has been spent on comparing statistical inference and forecasting procedures over different choices of GINAR process. We provide an extensive study of exact and approximate inference and forecasting methods that can be applied to a wide class of GINAR($p$) processes with general thinning and innovation parameters. We discuss the challenges of exact estimation when $p$ is larger. We summarize and extend asymptotic results for estimators of process parameters, and present simulations to compare small sample performance, highlighting how different methods compare. We illustrate this methodology by fitting GINAR processes to a disease surveillance series.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.