GITA: Graph to Visual and Textual Integration for Vision-Language Graph Reasoning
Abstract: LLMs are increasingly used for various tasks with graph structures. Though LLMs can process graph information in a textual format, they overlook the rich vision modality, which is an intuitive way for humans to comprehend structural information and conduct general graph reasoning. The potential benefits and capabilities of representing graph structures as visual images (i.e., $\textit{visual graph}$) are still unexplored. To fill the gap, we innovatively propose an end-to-end framework, called $\textbf{G}$raph to v$\textbf{I}$sual and $\textbf{T}$extual Integr$\textbf{A}$tion (GITA), which firstly incorporates visual graphs into general graph reasoning. Besides, we establish $\textbf{G}$raph-based $\textbf{V}$ision-$\textbf{L}$anguage $\textbf{Q}$uestion $\textbf{A}$nswering (GVLQA) dataset from existing graph data, which is the first vision-language dataset for general graph reasoning purposes. Extensive experiments on the GVLQA dataset and five real-world datasets show that GITA outperforms mainstream LLMs in terms of general graph reasoning capabilities. Moreover, We highlight the effectiveness of the layout augmentation on visual graphs and pretraining on the GVLQA dataset.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.