Papers
Topics
Authors
Recent
2000 character limit reached

Detecting AI-Generated Video via Frame Consistency

Published 3 Feb 2024 in cs.CV and cs.AI | (2402.02085v8)

Abstract: The escalating quality of video generated by advanced video generation methods results in new security challenges, while there have been few relevant research efforts: 1) There is no open-source dataset for generated video detection, 2) No generated video detection method has been proposed so far. To this end, we propose an open-source dataset and a detection method for generated video for the first time. First, we propose a scalable dataset consisting of 964 prompts, covering various forgery targets, scenes, behaviors, and actions, as well as various generation models with different architectures and generation methods, including the most popular commercial models like OpenAI's Sora and Google's Veo. Second, we found via probing experiments that spatial artifact-based detectors lack generalizability. Hence, we propose a simple yet effective \textbf{de}tection model based on \textbf{f}rame \textbf{co}nsistency (\textbf{DeCoF}), which focuses on temporal artifacts by eliminating the impact of spatial artifacts during feature learning. Extensive experiments demonstrate the efficacy of DeCoF in detecting videos generated by unseen video generation models and confirm its powerful generalizability across several commercially proprietary models.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.